{"title":"Constrained Weighted Least-Squares Algorithms for 3-D AOA-Based Hybrid Localization","authors":"Yanbin Zou;Wenbo Wu;Jingna Fan;Huaping Liu","doi":"10.1109/OJSP.2024.3360901","DOIUrl":null,"url":null,"abstract":"Source localization with time-of-arrival (TOA), time-difference-of-arrival (TDOA), time-delay (TD), received-signal-strength (RSS), or angle-of-arrival (AOA) measurements from several spatially distributed sensors is commonly used in practice. Existing analysis of the Cram \n<inline-formula><tex-math>$\\acute{\\text{e}}$</tex-math></inline-formula>\n r-Rao lower bounds (CRLB) shows that a hybrid of two or more independent kinds of measurement has a lower CRLB than one individual type of measurement. This paper develops a unified constrained weighted-least squares (CWLS) algorithm for five types of hybrid localization systems: AOA and TOA (AOA/TOA), AOA and TDOA (AOA/TDOA), AOA and TD (AOA/TD), AOA and RSS (AOA/RSS), AOA, TOA, and RSS (AOA/TOA/RSS). These formulated CWLS problems only have one quadratic constraint, which can be effectively solved by the Lagrange multiplier method and root-finding algorithm. Extensive simulation results show that the proposed CWLS algorithms are superior to state-of-the-art algorithms and reach the CRLB.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"436-448"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10417139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10417139/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Source localization with time-of-arrival (TOA), time-difference-of-arrival (TDOA), time-delay (TD), received-signal-strength (RSS), or angle-of-arrival (AOA) measurements from several spatially distributed sensors is commonly used in practice. Existing analysis of the Cram
$\acute{\text{e}}$
r-Rao lower bounds (CRLB) shows that a hybrid of two or more independent kinds of measurement has a lower CRLB than one individual type of measurement. This paper develops a unified constrained weighted-least squares (CWLS) algorithm for five types of hybrid localization systems: AOA and TOA (AOA/TOA), AOA and TDOA (AOA/TDOA), AOA and TD (AOA/TD), AOA and RSS (AOA/RSS), AOA, TOA, and RSS (AOA/TOA/RSS). These formulated CWLS problems only have one quadratic constraint, which can be effectively solved by the Lagrange multiplier method and root-finding algorithm. Extensive simulation results show that the proposed CWLS algorithms are superior to state-of-the-art algorithms and reach the CRLB.