Bianca Posocco, Martina Zanchetta, Marco Orleni, Sara Gagno, Marcella Montico, Elena Peruzzi, Rossana Roncato, Lorenzo Gerratana, Serena Corsetti, Fabio Puglisi, Giuseppe Toffoli
{"title":"Therapeutic Monitoring of Palbociclib, Ribociclib, Abemaciclib, M2, M20, and Letrozole in Human Plasma: A Novel LC-MS/MS Method.","authors":"Bianca Posocco, Martina Zanchetta, Marco Orleni, Sara Gagno, Marcella Montico, Elena Peruzzi, Rossana Roncato, Lorenzo Gerratana, Serena Corsetti, Fabio Puglisi, Giuseppe Toffoli","doi":"10.1097/FTD.0000000000001174","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Therapeutic drug monitoring (TDM) using cyclin-dependent kinase inhibitors (CDK4/6is) is a novel approach for optimizing treatment outcomes. Currently, palbociclib, ribociclib, and abemaciclib are the available CDK4/6is and are primarily coadministered with letrozole. This study aimed to develop and validate an LC-MS/MS method for the simultaneous analysis of CDK4/6is, 2 active metabolites of abemaciclib (M2 and M20), and letrozole in human plasma for use in TDM studies.</p><p><strong>Methods: </strong>Sample pretreatment comprised protein precipitation with methanol and dilution of the supernatant with an aqueous mobile phase. Chromatographic separation was achieved using a reversed-phase XBridge BEH C18 column (2.5 μm, 3.0 × 75 mm XP), with methanol serving as the organic mobile phase and pyrrolidine-pyrrolidinium formate (0.005:0.005 mol/L) buffer (pH 11.3) as the aqueous mobile phase. A triple quadrupole mass spectrometer was used for the detection, with the ESI source switched from negative to positive ionization mode and the acquisition performed in multiple reaction monitoring mode.</p><p><strong>Results: </strong>The complete validation procedure was successfully performed in accordance with the latest regulatory guidelines. The following analytical ranges (ng/mL) were established for the tested compounds: 6-300, palbociclib and letrozole; 120-6000, ribociclib; 40-800, abemaciclib; and 20-400, M2 and M20. All results met the acceptance criteria for linearity, accuracy, precision, selectivity, sensitivity, matrix effects, and carryover. A total of 85 patient samples were analyzed, and all measured concentrations were within the validated ranges. The percent difference for the reanalyzed samples ranged from -11.2% to 7.0%.</p><p><strong>Conclusions: </strong>A simple and robust LC-MS/MS method was successfully validated for the simultaneous quantification of CDK4/6is, M2, M20, and letrozole in human plasma. The assay was found to be suitable for measuring steady-state trough concentrations of the analytes in patient samples.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Drug Monitoring","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FTD.0000000000001174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Therapeutic drug monitoring (TDM) using cyclin-dependent kinase inhibitors (CDK4/6is) is a novel approach for optimizing treatment outcomes. Currently, palbociclib, ribociclib, and abemaciclib are the available CDK4/6is and are primarily coadministered with letrozole. This study aimed to develop and validate an LC-MS/MS method for the simultaneous analysis of CDK4/6is, 2 active metabolites of abemaciclib (M2 and M20), and letrozole in human plasma for use in TDM studies.
Methods: Sample pretreatment comprised protein precipitation with methanol and dilution of the supernatant with an aqueous mobile phase. Chromatographic separation was achieved using a reversed-phase XBridge BEH C18 column (2.5 μm, 3.0 × 75 mm XP), with methanol serving as the organic mobile phase and pyrrolidine-pyrrolidinium formate (0.005:0.005 mol/L) buffer (pH 11.3) as the aqueous mobile phase. A triple quadrupole mass spectrometer was used for the detection, with the ESI source switched from negative to positive ionization mode and the acquisition performed in multiple reaction monitoring mode.
Results: The complete validation procedure was successfully performed in accordance with the latest regulatory guidelines. The following analytical ranges (ng/mL) were established for the tested compounds: 6-300, palbociclib and letrozole; 120-6000, ribociclib; 40-800, abemaciclib; and 20-400, M2 and M20. All results met the acceptance criteria for linearity, accuracy, precision, selectivity, sensitivity, matrix effects, and carryover. A total of 85 patient samples were analyzed, and all measured concentrations were within the validated ranges. The percent difference for the reanalyzed samples ranged from -11.2% to 7.0%.
Conclusions: A simple and robust LC-MS/MS method was successfully validated for the simultaneous quantification of CDK4/6is, M2, M20, and letrozole in human plasma. The assay was found to be suitable for measuring steady-state trough concentrations of the analytes in patient samples.
期刊介绍:
Therapeutic Drug Monitoring is a peer-reviewed, multidisciplinary journal directed to an audience of pharmacologists, clinical chemists, laboratorians, pharmacists, drug researchers and toxicologists. It fosters the exchange of knowledge among the various disciplines–clinical pharmacology, pathology, toxicology, analytical chemistry–that share a common interest in Therapeutic Drug Monitoring. The journal presents studies detailing the various factors that affect the rate and extent drugs are absorbed, metabolized, and excreted. Regular features include review articles on specific classes of drugs, original articles, case reports, technical notes, and continuing education articles.