Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders.

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Faraz Ahmad, Ravi Sudesh, A Toufeeq Ahmed, Shafiul Haque
{"title":"Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders.","authors":"Faraz Ahmad, Ravi Sudesh, A Toufeeq Ahmed, Shafiul Haque","doi":"10.1007/s10571-024-01455-8","DOIUrl":null,"url":null,"abstract":"<p><p>HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-024-01455-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.

HOTAIR 长非编码 RNA 在胶质瘤和其他中枢神经系统疾病中的作用
HOX转录本反义基因间RNA(HOTAIR)是一种长非编码RNA(lncRNA),越来越被认为是大脑病理生理学多层次的重要分子介质。HOTAIR 对靶基因表达的表观遗传调控是通过对染色质修饰因子(组蛋白甲基转移酶多聚酶抑制复合体 2(PRC2)和组蛋白去甲基化酶赖氨酸特异性去甲基化酶 1(LSD1))的彻底调控来实现的。顺便提一下,HOTAIR 是第一个以反式作用方式引起特定微RNA(miRNA 或 miR)物种海绵化的 lncRNA。它已在包括胶质瘤在内的多种癌症中被广泛研究,并被认为是一种突出的促肿瘤和促致癌 lncRNA。事实上,HOTAIR的表达可作为胶质瘤分级预测因子和预后生物标志物。这篇及时的综述不仅旨在概述 HOTAIR 在胶质瘤和脑癌的发生发展和病理生理学中的多方面致病作用,而且还旨在描述将其视为整个脑部病理生理学关键调控因子的研究成果。虽然主要重点是神经肿瘤学,HOTAIR 在其中代表了一个特别强大的潜在致病因子和一个合适的治疗靶点,但也介绍了 HOTAIR 在神经变性、创伤、缺氧和缺血性脑损伤以及神经精神疾病中的调控作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信