Panagiotis Kanellopoulos, Adam Mattsson, Ayman Abouzayed, Karim Obeid, Berthold A. Nock, Vladimir Tolmachev, Theodosia Maina, Anna Orlova
{"title":"Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology","authors":"Panagiotis Kanellopoulos, Adam Mattsson, Ayman Abouzayed, Karim Obeid, Berthold A. Nock, Vladimir Tolmachev, Theodosia Maina, Anna Orlova","doi":"10.1186/s41181-024-00242-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [<sup>99m</sup>Tc]Tc-DB15 ([<sup>99m</sup>Tc]Tc-N<sub>4</sub>-AMA-DIG-<sub>D</sub>Phe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: <i>p</i>-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [<sup>111</sup>In]In-AU-SAR-M1 ([<sup>111</sup>In]In-DOTAGA-AMA-DIG-<sub>D</sub>Phe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [<sup>111</sup>In]In-AU-SAR-M2 ([<sup>111</sup>In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [<sup>111</sup>In]In-AU-SAR-M3 ([<sup>111</sup>In]In-[DOTAGA-<sub>D</sub>Arg]AU-SAR-M1).</p><h3>Results</h3><p>These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [<sup>99m</sup>Tc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [<sup>111</sup>In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ.</p><h3>Conclusions</h3><p>These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00242-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00242-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1).
Results
These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ.
Conclusions
These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.