Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution

IF 1.9 2区 经济学 Q2 ECONOMICS
Valeria Bignozzi , Luca Merlo , Lea Petrella
{"title":"Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution","authors":"Valeria Bignozzi ,&nbsp;Luca Merlo ,&nbsp;Lea Petrella","doi":"10.1016/j.insmatheco.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the statistical and actuarial literature, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-quantiles, <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>, represent an important class of risk measures defined through an asymmetric <em>p</em>-power loss function that generalize the classical (<span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-)quantiles. By exploiting inter-order relations between partial moments, we show that for a Student's <em>t</em> distribution with <span><math><mi>ν</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> degrees of freedom the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>ν</mi><mo>−</mo><mi>j</mi></mrow></msub></math></span>-quantile and the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-quantile always coincide for any <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>ν</mi><mo>−</mo><mn>1</mn><mo>]</mo></math></span>. For instance, for a Student's <em>t</em> distribution with 4 degrees of freedom, the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-quantile and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-quantile are equal and the same holds for the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-quantile and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-quantile; for this distribution, closed form expressions for the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-quantile, <span><math><mi>p</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> are provided. Explicit formulas for the central moments are also established. The usefulness of exact formulas is illustrated on real-world financial data.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"116 ","pages":"Pages 44-50"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000222","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the statistical and actuarial literature, Lp-quantiles, p[1,+), represent an important class of risk measures defined through an asymmetric p-power loss function that generalize the classical (L1-)quantiles. By exploiting inter-order relations between partial moments, we show that for a Student's t distribution with ν[1,+) degrees of freedom the Lνj-quantile and the Lj+1-quantile always coincide for any j[0,ν1]. For instance, for a Student's t distribution with 4 degrees of freedom, the L4-quantile and L1-quantile are equal and the same holds for the L3-quantile and L2-quantile; for this distribution, closed form expressions for the Lp-quantile, p=1,2,3,4 are provided. Explicit formulas for the central moments are also established. The usefulness of exact formulas is illustrated on real-world financial data.

学生 t 分布的 Lp 量级等价性之间的阶间关系
在统计和精算文献中,Lp-quantiles(p∈[1,+∞))代表了通过非对称 p-power 损失函数定义的一类重要风险度量,是对经典 (L1-)quantiles 的概括。通过利用部分矩之间的阶间关系,我们证明了对于自由度为 ν∈[1,+∞]的 Student's t 分布,对于任意 j∈[0,ν-1],Lν-j-quantile 和 Lj+1-quantile 总是重合的。例如,对于有 4 个自由度的 Student's t 分布,L4-quantile 和 L1-quantile 相等,L3-quantile 和 L2-quantile 也是如此;对于这种分布,提供了 p=1,2,3,4,Lp-quantile 的封闭式表达式。此外,还建立了中心矩的显式公式。通过实际金融数据说明了精确公式的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信