J. Saranya , K. Vagdevi , B. Jyothirmai , N. Anusuya , F. Benhiba , I. Warad , A. Zarrouk
{"title":"Application of quercetin as a green inhibitor to prevent mild steel corrosion in the petroleum industry: Experimental and modelling techniques","authors":"J. Saranya , K. Vagdevi , B. Jyothirmai , N. Anusuya , F. Benhiba , I. Warad , A. Zarrouk","doi":"10.1016/j.cdc.2024.101125","DOIUrl":null,"url":null,"abstract":"<div><p>Quercetin (QT) is found to be a green source of anti-corrosion additive for M-S protection in 0.5 M sulfuric solution. Weight loss, surface studies, atomic absorption spectroscopy, potentiodynamic polarization (PP), impedance spectroscopy (EIS), - more especially, scanning electron microscopy combined with energy dispersive spectroscopy SEM/EDS—and simulation studies were among the methods used to evaluate the efficacy of corrosion inhibition. With 1000 ppm of the inhibitor at 303 K, the weight loss trials had the highest inhibition effectiveness of 96.8 % which obeyed Langmuir adsorption isotherm. The inhibitor QT is represented as mixed-type as per polarization studies. Scanning electron microscopy test results showed the lesser degradation of the lower M-S surface in 0.5 M H<sub>2</sub>SO<sub>4</sub> solution at 1000 ppm QT. Moreover, modelling studies employing density functional theory (DFT) and molecular dynamics (MD) showed that the green inhibitor QT adsorbed on the M-S surface and formed a barrier on the metal surface.</p></div>","PeriodicalId":269,"journal":{"name":"Chemical Data Collections","volume":"50 ","pages":"Article 101125"},"PeriodicalIF":2.2180,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Data Collections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405830024000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Quercetin (QT) is found to be a green source of anti-corrosion additive for M-S protection in 0.5 M sulfuric solution. Weight loss, surface studies, atomic absorption spectroscopy, potentiodynamic polarization (PP), impedance spectroscopy (EIS), - more especially, scanning electron microscopy combined with energy dispersive spectroscopy SEM/EDS—and simulation studies were among the methods used to evaluate the efficacy of corrosion inhibition. With 1000 ppm of the inhibitor at 303 K, the weight loss trials had the highest inhibition effectiveness of 96.8 % which obeyed Langmuir adsorption isotherm. The inhibitor QT is represented as mixed-type as per polarization studies. Scanning electron microscopy test results showed the lesser degradation of the lower M-S surface in 0.5 M H2SO4 solution at 1000 ppm QT. Moreover, modelling studies employing density functional theory (DFT) and molecular dynamics (MD) showed that the green inhibitor QT adsorbed on the M-S surface and formed a barrier on the metal surface.
期刊介绍:
Chemical Data Collections (CDC) provides a publication outlet for the increasing need to make research material and data easy to share and re-use. Publication of research data with CDC will allow scientists to: -Make their data easy to find and access -Benefit from the fast publication process -Contribute to proper data citation and attribution -Publish their intermediate and null/negative results -Receive recognition for the work that does not fit traditional article format. The research data will be published as ''data articles'' that support fast and easy submission and quick peer-review processes. Data articles introduced by CDC are short self-contained publications about research materials and data. They must provide the scientific context of the described work and contain the following elements: a title, list of authors (plus affiliations), abstract, keywords, graphical abstract, metadata table, main text and at least three references. The journal welcomes submissions focusing on (but not limited to) the following categories of research output: spectral data, syntheses, crystallographic data, computational simulations, molecular dynamics and models, physicochemical data, etc.