Michelle Liu, Savine Hernandez, Christina L. Aquilante, Kimberly M. Deininger, Joann Lindenfeld, Kelly H. Schlendorf, Sara L. Van Driest
{"title":"Composite CYP3A (CYP3A4 and CYP3A5) phenotypes and influence on tacrolimus dose adjusted concentrations in adult heart transplant recipients","authors":"Michelle Liu, Savine Hernandez, Christina L. Aquilante, Kimberly M. Deininger, Joann Lindenfeld, Kelly H. Schlendorf, Sara L. Van Driest","doi":"10.1038/s41397-024-00325-2","DOIUrl":null,"url":null,"abstract":"CYP3A5 genetic variants are associated with tacrolimus metabolism. Controversy remains on whether CYP3A4 increased [*1B (rs2740574), *1 G (rs2242480)] and decreased function [*22 (rs35599367)] genetic variants provide additional information. This retrospective cohort study aims to address whether tacrolimus dose-adjusted trough concentrations differ between combined CYP3A (CYP3A5 and CYP3A4) phenotype groups. Heart transplanted patients (n = 177, between 2008 and 2020) were included and median age was 54 years old. Significant differences between CYP3A phenotype groups in tacrolimus dose-adjusted trough concentrations were found in the early postoperative period and continued to 6 months post-transplant. In CYP3A5 nonexpressers, carriers of CYP3A4*1B or *1 G variants (Group 3) compared to CYP3A4*1/*1 (Group 2) patients were found to have lower tacrolimus dose-adjusted trough concentrations at 2 months. In addition, significant differences were found among CYP3A phenotype groups in the dose at discharge and time to therapeutic range while time in therapeutic range was not significantly different. A combined CYP3A phenotype interpretation may provide more nuanced genotype-guided TAC dosing in heart transplant recipients.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"24 2","pages":"1-8"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics Journal","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41397-024-00325-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
CYP3A5 genetic variants are associated with tacrolimus metabolism. Controversy remains on whether CYP3A4 increased [*1B (rs2740574), *1 G (rs2242480)] and decreased function [*22 (rs35599367)] genetic variants provide additional information. This retrospective cohort study aims to address whether tacrolimus dose-adjusted trough concentrations differ between combined CYP3A (CYP3A5 and CYP3A4) phenotype groups. Heart transplanted patients (n = 177, between 2008 and 2020) were included and median age was 54 years old. Significant differences between CYP3A phenotype groups in tacrolimus dose-adjusted trough concentrations were found in the early postoperative period and continued to 6 months post-transplant. In CYP3A5 nonexpressers, carriers of CYP3A4*1B or *1 G variants (Group 3) compared to CYP3A4*1/*1 (Group 2) patients were found to have lower tacrolimus dose-adjusted trough concentrations at 2 months. In addition, significant differences were found among CYP3A phenotype groups in the dose at discharge and time to therapeutic range while time in therapeutic range was not significantly different. A combined CYP3A phenotype interpretation may provide more nuanced genotype-guided TAC dosing in heart transplant recipients.
期刊介绍:
The Pharmacogenomics Journal is a print and electronic journal, which is dedicated to the rapid publication of original research on pharmacogenomics and its clinical applications.
Key areas of coverage include:
Personalized medicine
Effects of genetic variability on drug toxicity and efficacy
Identification and functional characterization of polymorphisms relevant to drug action
Pharmacodynamic and pharmacokinetic variations and drug efficacy
Integration of new developments in the genome project and proteomics into clinical medicine, pharmacology, and therapeutics
Clinical applications of genomic science
Identification of novel genomic targets for drug development
Potential benefits of pharmacogenomics.