{"title":"A conformal regressor for predicting negative conversion time of Omicron patients.","authors":"Pingping Wang, Shenjing Wu, Mei Tian, Kunmeng Liu, Jinyu Cong, Wei Zhang, Benzheng Wei","doi":"10.1007/s11517-024-03029-8","DOIUrl":null,"url":null,"abstract":"<p><p>In light of the situation and the characteristics of Omicron, the country has continuously optimized the rules for the prevention and control of COVID-19. The global epidemic is still spreading, and new cases of infection continue to emerge in China. To facilitate the infected person to estimate the course of virus infection, a prediction model for predicting negative conversion time is proposed in this article. The clinical features of Omicron-infected patients in Shandong Province in the first half of 2022 are retrospectively studied. These features are grouped by disease diagnosis result, clinical sign, traditional Chinese medicine symptoms, and drug use. These features are input to the eXtreme Gradient Boosting (XGBoost) model, and the output is the predicted number of negative conversion days. At the same time, XGBoost is used as the underlying algorithm of the conformal prediction (CP) framework, which can realize the probability interval estimation with a controllable error rate. The results show that the proposed model has a mean absolute error of 3.54 days and has the shortest interval prediction result. This shows that the method in this paper can carry more decision-making information and help people better understand the disease and self-estimate the course of the disease to a certain extent.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"2485-2495"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03029-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In light of the situation and the characteristics of Omicron, the country has continuously optimized the rules for the prevention and control of COVID-19. The global epidemic is still spreading, and new cases of infection continue to emerge in China. To facilitate the infected person to estimate the course of virus infection, a prediction model for predicting negative conversion time is proposed in this article. The clinical features of Omicron-infected patients in Shandong Province in the first half of 2022 are retrospectively studied. These features are grouped by disease diagnosis result, clinical sign, traditional Chinese medicine symptoms, and drug use. These features are input to the eXtreme Gradient Boosting (XGBoost) model, and the output is the predicted number of negative conversion days. At the same time, XGBoost is used as the underlying algorithm of the conformal prediction (CP) framework, which can realize the probability interval estimation with a controllable error rate. The results show that the proposed model has a mean absolute error of 3.54 days and has the shortest interval prediction result. This shows that the method in this paper can carry more decision-making information and help people better understand the disease and self-estimate the course of the disease to a certain extent.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).