Hanchu Xiong , Yanan Zhai , Yimei Meng , Zhuazhua Wu , Anchen Qiu , Yu Cai , Geyi Wang , Liu Yang
{"title":"Acidosis activates breast cancer ferroptosis through ZFAND5/SLC3A2 signaling axis and elicits M1 macrophage polarization","authors":"Hanchu Xiong , Yanan Zhai , Yimei Meng , Zhuazhua Wu , Anchen Qiu , Yu Cai , Geyi Wang , Liu Yang","doi":"10.1016/j.canlet.2024.216732","DOIUrl":null,"url":null,"abstract":"<div><p>Acidosis is involved in multiple pathways in tumor cells and immune cells among the tumor microenvironment (TME). Ferroptosis is a nonapoptotic and iron-dependent form of cell death characterized by accumulation of lipid peroxidation involved in various cancers. The role of ferroptosis in the breast cancer (BC) acidic microenvironment remains unrevealed. Here, we reported that short-term acidosis induced ferroptosis of BC cells in the zinc finger AN1-type domain 5 (ZFAND5)/solute carrier family 3 member 2 (SLC3A2) dependent manner to suppress tumor growth using in silico and multiple biological methods. Mechanistically, we demonstrated that short-term acidosis increased total/lipid reactive oxygen species (ROS) level, decreased glutathione (GSH) level and induced the morphological changes of mitochondria. Specifically, acidosis restrained the protein stability of SLC3A2 by promoting its ubiquitination process. The prognostic analysis showed that higher expression of ZFAND5 and lower expression of SLC3A2 were correlated with longer overall survival of BC patients, respectively. Furthermore, in combination with ferroptosis agonist metformin, short-term acidosis could synergistically inhibit viability and enhance the ferroptosis of BC cells. Meanwhile, by the exploration of immune cells, short-term acidosis also induced M1 macrophage polarization, triggering processes of phagocytosis and ferroptosis in BC cells. This study demonstrated that short-term acidosis induced BC cell ferroptosis through ZFAND5/SLC3A2 signaling axis and promoted phagocytosis and ferroptosis of BC cells with M1 macrophage polarization, which might be a new mechanism for BC therapy.</p></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"587 ","pages":"Article 216732"},"PeriodicalIF":9.1000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524001253","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acidosis is involved in multiple pathways in tumor cells and immune cells among the tumor microenvironment (TME). Ferroptosis is a nonapoptotic and iron-dependent form of cell death characterized by accumulation of lipid peroxidation involved in various cancers. The role of ferroptosis in the breast cancer (BC) acidic microenvironment remains unrevealed. Here, we reported that short-term acidosis induced ferroptosis of BC cells in the zinc finger AN1-type domain 5 (ZFAND5)/solute carrier family 3 member 2 (SLC3A2) dependent manner to suppress tumor growth using in silico and multiple biological methods. Mechanistically, we demonstrated that short-term acidosis increased total/lipid reactive oxygen species (ROS) level, decreased glutathione (GSH) level and induced the morphological changes of mitochondria. Specifically, acidosis restrained the protein stability of SLC3A2 by promoting its ubiquitination process. The prognostic analysis showed that higher expression of ZFAND5 and lower expression of SLC3A2 were correlated with longer overall survival of BC patients, respectively. Furthermore, in combination with ferroptosis agonist metformin, short-term acidosis could synergistically inhibit viability and enhance the ferroptosis of BC cells. Meanwhile, by the exploration of immune cells, short-term acidosis also induced M1 macrophage polarization, triggering processes of phagocytosis and ferroptosis in BC cells. This study demonstrated that short-term acidosis induced BC cell ferroptosis through ZFAND5/SLC3A2 signaling axis and promoted phagocytosis and ferroptosis of BC cells with M1 macrophage polarization, which might be a new mechanism for BC therapy.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.