Some appropriate results for the existence theory and numerical solutions of fractals–fractional order malaria disease mathematical model

Q3 Mathematics
Israr Ahmad , Nisar Ahmad , Kamal Shah , Thabet Abdeljawad
{"title":"Some appropriate results for the existence theory and numerical solutions of fractals–fractional order malaria disease mathematical model","authors":"Israr Ahmad ,&nbsp;Nisar Ahmad ,&nbsp;Kamal Shah ,&nbsp;Thabet Abdeljawad","doi":"10.1016/j.rico.2024.100386","DOIUrl":null,"url":null,"abstract":"<div><p>Investigation of a mathematical model of malaria is considered in this manuscript. The concerned problem is investigated via Caputo–Fabrizio fractal fractional derivative. We derive the necessary conditions for the existence and uniqueness of solution for the proposed model of malaria. A powerful numerical procedure called Adams–Bashforth method is utilized for the simulations of our results. The considered technique is an excellent mathematical tool which is more efficient than the Euler and RK4 method. To discuss the dynamics of considered model, we provided the graphical presentations of our results by using various fractals and fractional orders values.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"14 ","pages":"Article 100386"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266672072400016X/pdfft?md5=db32b52ff7ad4d88b17414261b082057&pid=1-s2.0-S266672072400016X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266672072400016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Investigation of a mathematical model of malaria is considered in this manuscript. The concerned problem is investigated via Caputo–Fabrizio fractal fractional derivative. We derive the necessary conditions for the existence and uniqueness of solution for the proposed model of malaria. A powerful numerical procedure called Adams–Bashforth method is utilized for the simulations of our results. The considered technique is an excellent mathematical tool which is more efficient than the Euler and RK4 method. To discuss the dynamics of considered model, we provided the graphical presentations of our results by using various fractals and fractional orders values.

分形-分数阶疟疾病数学模型的存在论和数值解的一些适当结果
本手稿对疟疾数学模型进行了研究。相关问题通过卡普托-法布里齐奥分形分数导数进行研究。我们推导出了拟议疟疾模型解的存在性和唯一性的必要条件。我们使用了一种名为 Adams-Bashforth 方法的强大数值程序来模拟我们的结果。该技术是一种出色的数学工具,比欧拉和 RK4 方法更有效。为了讨论所考虑模型的动态,我们使用各种分形和分数阶值对结果进行了图解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信