Fabiano Moulin de Moraes, Sérgio Brasil, Gustavo Frigieri, Chiara Robba, Wellingson Paiva, Gisele Sampaio Silva
{"title":"ICP wave morphology as a screening test to exclude intracranial hypertension in brain-injured patients: a non-invasive perspective.","authors":"Fabiano Moulin de Moraes, Sérgio Brasil, Gustavo Frigieri, Chiara Robba, Wellingson Paiva, Gisele Sampaio Silva","doi":"10.1007/s10877-023-01120-3","DOIUrl":null,"url":null,"abstract":"<p><p>Intracranial hypertension (IH) is a life-threating condition especially for the brain injured patient. In such cases, an external ventricular drain (EVD) or an intraparenchymal bolt are the conventional gold standard for intracranial pressure (ICPi) monitoring. However, these techniques have several limitations. Therefore, identifying an ideal screening method for IH is important to avoid the unnecessary placement of ICPi and expedite its introduction in patients who require it. A potential screening tool is the ICP wave morphology (ICPW) which changes according to the intracranial volume-pressure curve. Specifically, the P2/P1 ratio of the ICPW has shown promise as a triage test to indicate normal ICP. In this study, we propose evaluating the noninvasive ICPW (nICPW-B4C sensor) as a screening method for ICPi monitoring in patients with moderate to high probability of IH. This is a retrospective analysis of a prospective, multicenter study that recruited adult patients requiring ICPi monitoring from both Federal University of São Paulo and University of São Paulo Medical School Hospitals. ICPi values and the nICPW parameters were obtained from both the invasive and the noninvasive methods simultaneously 5 min after the closure of the EVD drainage. ICP assessment was performed using a catheter inserted into the ventricle and connected to a pressure transducer and a drainage system. The B4C sensor was positioned on the patient's scalp without the need for trichotomy, surgical incision or trepanation, and the morphology of the ICP waves acquired through a strain sensor that can detect and monitor skull bone deformations caused by changes in ICP. All patients were monitored using this noninvasive system for at least 10 min per session. The area under the curve (AUC) was used to describe discriminatory power of the P2/P1 ratio for IH, with emphasis in the Negative Predictive value (NPV), based on the Youden index, and the negative likelihood ratio [LR-]. Recruitment occurred from August 2017 to March 2020. A total of 69 patients fulfilled inclusion and exclusion criteria in the two centers and a total of 111 monitorizations were performed. The mean P2/P1 ratio value in the sample was 1.12. The mean P2/P1 value in the no IH population was 1.01 meanwhile in the IH population was 1.32 (p < 0.01). The best Youden index for the mean P2/P1 ratio was with a cut-off value of 1.13 showing a sensitivity of 93%, specificity of 60%, and a NPV of 97%, as well as an AUC of 0.83 to predict IH. With the 1.13 cut-off value for P2/P1 ratio, the LR- for IH was 0.11, corresponding to a strong performance in ruling out the condition (IH), with an approximate 45% reduction in condition probability after a negative test (ICPW). To conclude, the P2/P1 ratio of the noninvasive ICP waveform showed in this study a high Negative Predictive Value and Likelihood Ratio in different acute neurological conditions to rule out IH. As a result, this parameter may be beneficial in situations where invasive methods are not feasible or unavailable and to screen high-risk patients for potential invasive ICP monitoring.Trial registration: At clinicaltrials.gov under numbers NCT05121155 (Registered 16 November 2021-retrospectively registered) and NCT03144219 (Registered 30 September 2022-retrospectively registered).</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":"773-782"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-023-01120-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracranial hypertension (IH) is a life-threating condition especially for the brain injured patient. In such cases, an external ventricular drain (EVD) or an intraparenchymal bolt are the conventional gold standard for intracranial pressure (ICPi) monitoring. However, these techniques have several limitations. Therefore, identifying an ideal screening method for IH is important to avoid the unnecessary placement of ICPi and expedite its introduction in patients who require it. A potential screening tool is the ICP wave morphology (ICPW) which changes according to the intracranial volume-pressure curve. Specifically, the P2/P1 ratio of the ICPW has shown promise as a triage test to indicate normal ICP. In this study, we propose evaluating the noninvasive ICPW (nICPW-B4C sensor) as a screening method for ICPi monitoring in patients with moderate to high probability of IH. This is a retrospective analysis of a prospective, multicenter study that recruited adult patients requiring ICPi monitoring from both Federal University of São Paulo and University of São Paulo Medical School Hospitals. ICPi values and the nICPW parameters were obtained from both the invasive and the noninvasive methods simultaneously 5 min after the closure of the EVD drainage. ICP assessment was performed using a catheter inserted into the ventricle and connected to a pressure transducer and a drainage system. The B4C sensor was positioned on the patient's scalp without the need for trichotomy, surgical incision or trepanation, and the morphology of the ICP waves acquired through a strain sensor that can detect and monitor skull bone deformations caused by changes in ICP. All patients were monitored using this noninvasive system for at least 10 min per session. The area under the curve (AUC) was used to describe discriminatory power of the P2/P1 ratio for IH, with emphasis in the Negative Predictive value (NPV), based on the Youden index, and the negative likelihood ratio [LR-]. Recruitment occurred from August 2017 to March 2020. A total of 69 patients fulfilled inclusion and exclusion criteria in the two centers and a total of 111 monitorizations were performed. The mean P2/P1 ratio value in the sample was 1.12. The mean P2/P1 value in the no IH population was 1.01 meanwhile in the IH population was 1.32 (p < 0.01). The best Youden index for the mean P2/P1 ratio was with a cut-off value of 1.13 showing a sensitivity of 93%, specificity of 60%, and a NPV of 97%, as well as an AUC of 0.83 to predict IH. With the 1.13 cut-off value for P2/P1 ratio, the LR- for IH was 0.11, corresponding to a strong performance in ruling out the condition (IH), with an approximate 45% reduction in condition probability after a negative test (ICPW). To conclude, the P2/P1 ratio of the noninvasive ICP waveform showed in this study a high Negative Predictive Value and Likelihood Ratio in different acute neurological conditions to rule out IH. As a result, this parameter may be beneficial in situations where invasive methods are not feasible or unavailable and to screen high-risk patients for potential invasive ICP monitoring.Trial registration: At clinicaltrials.gov under numbers NCT05121155 (Registered 16 November 2021-retrospectively registered) and NCT03144219 (Registered 30 September 2022-retrospectively registered).
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.