{"title":"Strong Norm Error Bounds for Quasilinear Wave Equations Under Weak CFL-Type Conditions","authors":"Benjamin Dörich","doi":"10.1007/s10208-024-09639-w","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we consider a class of quasilinear wave equations on a smooth, bounded domain. We discretize it in space with isoparametric finite elements and apply a semi-implicit Euler and midpoint rule as well as the exponential Euler and midpoint rule to obtain four fully discrete schemes. We derive rigorous error bounds of optimal order for the semi-discretization in space and the fully discrete methods in norms which are stronger than the classical <span>\\(H^1\\times L^2\\)</span> energy norm under weak CFL-type conditions. To confirm our theoretical findings, we also present numerical experiments.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"84 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09639-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, we consider a class of quasilinear wave equations on a smooth, bounded domain. We discretize it in space with isoparametric finite elements and apply a semi-implicit Euler and midpoint rule as well as the exponential Euler and midpoint rule to obtain four fully discrete schemes. We derive rigorous error bounds of optimal order for the semi-discretization in space and the fully discrete methods in norms which are stronger than the classical \(H^1\times L^2\) energy norm under weak CFL-type conditions. To confirm our theoretical findings, we also present numerical experiments.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.