Strong Norm Error Bounds for Quasilinear Wave Equations Under Weak CFL-Type Conditions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Benjamin Dörich
{"title":"Strong Norm Error Bounds for Quasilinear Wave Equations Under Weak CFL-Type Conditions","authors":"Benjamin Dörich","doi":"10.1007/s10208-024-09639-w","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, we consider a class of quasilinear wave equations on a smooth, bounded domain. We discretize it in space with isoparametric finite elements and apply a semi-implicit Euler and midpoint rule as well as the exponential Euler and midpoint rule to obtain four fully discrete schemes. We derive rigorous error bounds of optimal order for the semi-discretization in space and the fully discrete methods in norms which are stronger than the classical <span>\\(H^1\\times L^2\\)</span> energy norm under weak CFL-type conditions. To confirm our theoretical findings, we also present numerical experiments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09639-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we consider a class of quasilinear wave equations on a smooth, bounded domain. We discretize it in space with isoparametric finite elements and apply a semi-implicit Euler and midpoint rule as well as the exponential Euler and midpoint rule to obtain four fully discrete schemes. We derive rigorous error bounds of optimal order for the semi-discretization in space and the fully discrete methods in norms which are stronger than the classical \(H^1\times L^2\) energy norm under weak CFL-type conditions. To confirm our theoretical findings, we also present numerical experiments.

Abstract Image

弱 CFL 型条件下准线性波方程的强规范误差约束
在本文中,我们考虑了光滑有界域上的一类准线性波方程。我们用等参数有限元对其进行空间离散化,并应用半隐式欧拉和中点规则以及指数式欧拉和中点规则得到四个全离散方案。我们为空间半离散化和完全离散方法推导出严格的最优阶误差边界,在弱 CFL 型条件下,其规范比经典的 \(H^1\times L^2\) 能量规范更强。为了证实我们的理论发现,我们还进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信