A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton

IF 2.4 1区 数学 Q1 MATHEMATICS
Richard H. Bamler, Charles Cifarelli, Ronan J. Conlon, Alix Deruelle
{"title":"A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton","authors":"Richard H. Bamler, Charles Cifarelli, Ronan J. Conlon, Alix Deruelle","doi":"10.1007/s00039-024-00668-9","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of a unique complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on the blowup of <span>\\(\\mathbb{C}\\times \\mathbb{P}^{1}\\)</span> at one point. This completes the classification of such solitons in two complex dimensions.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"156 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00668-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of a unique complete shrinking gradient Kähler-Ricci soliton with bounded scalar curvature on the blowup of \(\mathbb{C}\times \mathbb{P}^{1}\) at one point. This completes the classification of such solitons in two complex dimensions.

一种新的完整二维收缩梯度凯勒-里奇孤子
我们证明了在\(\mathbb{C}\times \mathbb{P}^{1}\)炸开的一点上存在一个唯一的完全收缩梯度凯勒-里奇孤子,它具有有界的标量曲率。这就完成了二维复数中此类孤子的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信