{"title":"Framework of compressive sensing and data compression for 4D-STEM","authors":"Hsu-Chih Ni , Renliang Yuan , Jiong Zhang , Jian-Min Zuo","doi":"10.1016/j.ultramic.2024.113938","DOIUrl":null,"url":null,"abstract":"<div><p>Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) is a powerful technique for high-resolution and high-precision materials characterization at multiple length scales, including the characterization of beam-sensitive materials. However, the field of view of 4D-STEM is relatively small, which in absence of live processing is limited by the data size required for storage. Furthermore, the rectilinear scan approach currently employed in 4D-STEM places a resolution- and signal-dependent dose limit for the study of beam sensitive materials. Improving 4D-STEM data and dose efficiency, by keeping the data size manageable while limiting the amount of electron dose, is thus critical for broader applications. Here we introduce a general method for reconstructing 4D-STEM data with subsampling in both real and reciprocal spaces at high fidelity. The approach is first tested on the subsampled datasets created from a full 4D-STEM dataset, and then demonstrated experimentally using random scan in real-space. The same reconstruction algorithm can also be used for compression of 4D-STEM datasets, leading to a large reduction (100 times or more) in data size, while retaining the fine features of 4D-STEM imaging, for crystalline samples.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113938"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000172/pdfft?md5=8e2f018c37eccbf882d300e115155e45&pid=1-s2.0-S0304399124000172-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) is a powerful technique for high-resolution and high-precision materials characterization at multiple length scales, including the characterization of beam-sensitive materials. However, the field of view of 4D-STEM is relatively small, which in absence of live processing is limited by the data size required for storage. Furthermore, the rectilinear scan approach currently employed in 4D-STEM places a resolution- and signal-dependent dose limit for the study of beam sensitive materials. Improving 4D-STEM data and dose efficiency, by keeping the data size manageable while limiting the amount of electron dose, is thus critical for broader applications. Here we introduce a general method for reconstructing 4D-STEM data with subsampling in both real and reciprocal spaces at high fidelity. The approach is first tested on the subsampled datasets created from a full 4D-STEM dataset, and then demonstrated experimentally using random scan in real-space. The same reconstruction algorithm can also be used for compression of 4D-STEM datasets, leading to a large reduction (100 times or more) in data size, while retaining the fine features of 4D-STEM imaging, for crystalline samples.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.