QUBO formulations for a system of linear equations

Q3 Mathematics
Kyungtaek Jun
{"title":"QUBO formulations for a system of linear equations","authors":"Kyungtaek Jun","doi":"10.1016/j.rico.2024.100380","DOIUrl":null,"url":null,"abstract":"<div><p>With the advent of quantum computers, many quantum computing algorithms are being developed. Solving linear systems is one of the most fundamental problems in modern science and engineering. The Harrow Hassidim-Lloyd algorithm, a monumental quantum algorithm for solving linear systems on gate model quantum computers, was invented and several advanced variations have been developed. The algorithm was difficult to apply to general linear equations because it required various conditions for the matrix. In this paper, we introduce a new algorithm that can be applied to all linear systems. For a given general square matrix <span><math><mrow><mi>A</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msup></mrow></math></span> and a vector <span><math><mrow><mover><mi>b</mi><mo>→</mo></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mi>n</mi></msup></mrow></math></span>, we will find quadratic unconstrained binary optimization (QUBO) models for a vector <span><math><mrow><mover><mi>x</mi><mo>→</mo></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mi>n</mi></msup></mrow></math></span> that satisfies <span><math><mrow><mi>A</mi><mover><mi>x</mi><mo>→</mo></mover><mo>=</mo><mover><mi>b</mi><mo>→</mo></mover></mrow></math></span>. To formulate QUBO models for solving linear systems, we made use of a linear least-square problem with binary representation of the solution. We validated those QUBO models on the d-Wave system and discussed the results. For a simple system, we provide a Python code to calculate the matrix characterizing the relationship between the variables, and to print the test code that can be used directly in the d-Wave system.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"14 ","pages":"Article 100380"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000109/pdfft?md5=1d0f4c6001070226c2bf21fc179cf7fe&pid=1-s2.0-S2666720724000109-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of quantum computers, many quantum computing algorithms are being developed. Solving linear systems is one of the most fundamental problems in modern science and engineering. The Harrow Hassidim-Lloyd algorithm, a monumental quantum algorithm for solving linear systems on gate model quantum computers, was invented and several advanced variations have been developed. The algorithm was difficult to apply to general linear equations because it required various conditions for the matrix. In this paper, we introduce a new algorithm that can be applied to all linear systems. For a given general square matrix ARn×n and a vector bRn, we will find quadratic unconstrained binary optimization (QUBO) models for a vector xRn that satisfies Ax=b. To formulate QUBO models for solving linear systems, we made use of a linear least-square problem with binary representation of the solution. We validated those QUBO models on the d-Wave system and discussed the results. For a simple system, we provide a Python code to calculate the matrix characterizing the relationship between the variables, and to print the test code that can be used directly in the d-Wave system.

线性方程组的 QUBO 公式
随着量子计算机的出现,许多量子计算算法正在被开发出来。求解线性系统是现代科学和工程中最基本的问题之一。哈罗-哈西迪姆-劳埃德算法是在门模型量子计算机上求解线性方程组的一种不朽的量子算法。该算法很难应用于一般线性方程,因为它需要矩阵的各种条件。在本文中,我们介绍了一种可应用于所有线性系统的新算法。对于给定的一般正方形矩阵 A∈Rn×n 和向量 b→∈Rn,我们将为满足 Ax→=b→ 的向量 x→∈Rn 寻找二次无约束二元优化(QUBO)模型。为了建立求解线性系统的 QUBO 模型,我们利用了线性最小二乘法问题的二进制解。我们在 d-Wave 系统上验证了这些 QUBO 模型,并对结果进行了讨论。对于一个简单的系统,我们提供了一个 Python 代码,用于计算表征变量之间关系的矩阵,并打印可直接用于 d-Wave 系统的测试代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信