Optically-Trapped Nanodiamond-Relaxometry Detection of Nanomolar Paramagnetic Spins in Aqueous Environments.

ArXiv Pub Date : 2024-11-20
Shiva Iyer, Changyu Yao, Olivia Lazorik, Md Shakil Bin Kashem, Pengyun Wang, Gianna Glenn, Michael Mohs, Yinyao Shi, Michael Mansour, Erik Henriksen, Kater Murch, Shankar Mukherji, Chong Zu
{"title":"Optically-Trapped Nanodiamond-Relaxometry Detection of Nanomolar Paramagnetic Spins in Aqueous Environments.","authors":"Shiva Iyer, Changyu Yao, Olivia Lazorik, Md Shakil Bin Kashem, Pengyun Wang, Gianna Glenn, Michael Mohs, Yinyao Shi, Michael Mansour, Erik Henriksen, Kater Murch, Shankar Mukherji, Chong Zu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Probing electrical and magnetic properties in aqueous environments remains a frontier challenge in nanoscale sensing. Our inability to do so with quantitative accuracy imposes severe limitations, for example, on our understanding of the ionic environments in a diverse array of systems, ranging from novel materials to the living cell. The Nitrogen-Vacancy (NV) center in fluorescent nanodiamonds (FNDs) has emerged as a good candidate to sense temperature, pH, and the concentration of paramagnetic species at the nanoscale, but comes with several hurdles such as particle-to-particle variation which render calibrated measurements difficult, and the challenge to tightly confine and precisely position sensors in aqueous environment. To address this, we demonstrate relaxometry with NV centers within optically-trapped FNDs. In a proof of principle experiment, we show that optically-trapped FNDs enable highly reproducible nanomolar sensitivity to the paramagnetic ion, (\\mathrm{Gd}^{3+}). We capture the three distinct phases of our experimental data by devising a model analogous to nanoscale Langmuir adsorption combined with spin coherence dynamics. Our work provides a basis for routes to sense free paramagnetic ions and molecules in biologically relevant conditions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probing electrical and magnetic properties in aqueous environments remains a frontier challenge in nanoscale sensing. Our inability to do so with quantitative accuracy imposes severe limitations, for example, on our understanding of the ionic environments in a diverse array of systems, ranging from novel materials to the living cell. The Nitrogen-Vacancy (NV) center in fluorescent nanodiamonds (FNDs) has emerged as a good candidate to sense temperature, pH, and the concentration of paramagnetic species at the nanoscale, but comes with several hurdles such as particle-to-particle variation which render calibrated measurements difficult, and the challenge to tightly confine and precisely position sensors in aqueous environment. To address this, we demonstrate relaxometry with NV centers within optically-trapped FNDs. In a proof of principle experiment, we show that optically-trapped FNDs enable highly reproducible nanomolar sensitivity to the paramagnetic ion, (\mathrm{Gd}^{3+}). We capture the three distinct phases of our experimental data by devising a model analogous to nanoscale Langmuir adsorption combined with spin coherence dynamics. Our work provides a basis for routes to sense free paramagnetic ions and molecules in biologically relevant conditions.

水环境中纳摩尔顺磁自旋的光俘获纳米钻石再axometry 检测。
探测水环境中的电特性和磁特性仍然是纳米传感领域的一项前沿挑战。我们无法准确地定量探测,这严重限制了我们对从新型材料到活细胞等各种系统中离子环境的了解。荧光纳米金刚石(FNDs)中的氮-空穴(NV)中心已成为在纳米尺度上感知温度、pH 值和顺磁物种浓度的理想候选材料,但它也面临着一些障碍,例如颗粒与颗粒之间的差异会导致难以进行校准测量,以及在水环境中严格限制和精确定位传感器所面临的挑战。为了解决这个问题,我们展示了在光学捕获的 FND 中使用 NV 中心进行弛豫测量的方法。在原理验证实验中,我们证明了光学捕获的 FND 对顺磁性离子 (\mathrm{Gd}^{3+})具有高度可重现的纳摩尔灵敏度。我们通过设计一个类似于纳米级朗缪尔吸附结合自旋相干动力学的模型来捕捉实验数据的三个不同阶段。我们的工作为在生物相关条件下感知游离顺磁离子和分子提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信