{"title":"Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology.","authors":"Shigeyoshi Saito, Junpei Ueda","doi":"10.1007/s12194-024-00785-y","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) is an indispensable diagnostic imaging technique used in the clinical setting. MRI is advantageous over X-ray and computed tomography (CT), because the contrast provided depends on differences in the density of various organ tissues. In addition to MRI systems in hospitals, more than 100 systems are used for research purposes in Japan in various fields, including basic scientific research, molecular and clinical investigations, and life science research, such as drug discovery, veterinary medicine, and food testing. For many years, additional preclinical imaging studies have been conducted in basic research in the fields of radiation technology, medical physics, and radiology. The preclinical MRI research includes studies using small-bore and whole-body MRI systems. In this review, we focus on the animal study using small-bore MRI systems as \"preclinical MRI\". The preclinical MRI can be used to elucidate the pathophysiology of diseases and for translational research. This review will provide an overview of previous preclinical MRI studies such as brain, heart, and liver disease assessments. Also, we provide an overview of the utility of preclinical MRI studies in radiological physics and technology.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"47-59"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00785-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI) is an indispensable diagnostic imaging technique used in the clinical setting. MRI is advantageous over X-ray and computed tomography (CT), because the contrast provided depends on differences in the density of various organ tissues. In addition to MRI systems in hospitals, more than 100 systems are used for research purposes in Japan in various fields, including basic scientific research, molecular and clinical investigations, and life science research, such as drug discovery, veterinary medicine, and food testing. For many years, additional preclinical imaging studies have been conducted in basic research in the fields of radiation technology, medical physics, and radiology. The preclinical MRI research includes studies using small-bore and whole-body MRI systems. In this review, we focus on the animal study using small-bore MRI systems as "preclinical MRI". The preclinical MRI can be used to elucidate the pathophysiology of diseases and for translational research. This review will provide an overview of previous preclinical MRI studies such as brain, heart, and liver disease assessments. Also, we provide an overview of the utility of preclinical MRI studies in radiological physics and technology.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.