Stability, numerical simulations, and applications of Helmholtz-Duffing fractional differential equations

Q1 Mathematics
M. Sivashankar , S. Sabarinathan , Kottakkaran Sooppy Nisar , C. Ravichandran , B.V. Senthil Kumar
{"title":"Stability, numerical simulations, and applications of Helmholtz-Duffing fractional differential equations","authors":"M. Sivashankar ,&nbsp;S. Sabarinathan ,&nbsp;Kottakkaran Sooppy Nisar ,&nbsp;C. Ravichandran ,&nbsp;B.V. Senthil Kumar","doi":"10.1016/j.csfx.2024.100106","DOIUrl":null,"url":null,"abstract":"<div><p>The Helmholtz-Duffing equation with the Caputo fractional order derivative will be introduced in this article. We employ the fixed point theory to establish the existence and uniqueness results and prove the Hyers-Ulam stability. Drone applications for controlling the synthesis of external forces in torque, angular velocity, and projection served as a source of motivation. In the end, we developed numerical simulations to support our theoretical findings.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"12 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054424000034/pdfft?md5=8003257519d61daeafdbe87043227ee4&pid=1-s2.0-S2590054424000034-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054424000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The Helmholtz-Duffing equation with the Caputo fractional order derivative will be introduced in this article. We employ the fixed point theory to establish the existence and uniqueness results and prove the Hyers-Ulam stability. Drone applications for controlling the synthesis of external forces in torque, angular velocity, and projection served as a source of motivation. In the end, we developed numerical simulations to support our theoretical findings.

赫尔姆霍兹-杜芬分数微分方程的稳定性、数值模拟和应用
本文将介绍具有 Caputo 分数阶导数的 Helmholtz-Duffing 方程。我们利用定点理论建立了存在性和唯一性结果,并证明了 Hyers-Ulam 稳定性。无人机在扭矩、角速度和投影等外力合成控制方面的应用是研究的动力来源。最后,我们进行了数值模拟,以支持我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信