Guanghui ZHANG , Yang YANG , Yingna LIU , Zhiqiang WANG
{"title":"Prospects of sediment deposition at small watershed scale in the black soil region of Northeast China: A mini review","authors":"Guanghui ZHANG , Yang YANG , Yingna LIU , Zhiqiang WANG","doi":"10.1016/j.pedsph.2022.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>Sediment deposition is one of the most significant processes in small watersheds characterized by gentle long hillslopes in the black soil (Mollisol) region of Northeast China, as indicated by severe ephemeral gully and gully erosion on hillslopes and very low sediment concentrations in river systems. Few reviews have been conducted to summarize the related research in this region. The objectives of this review were to identify the potential factors influencing sediment deposition, review related studies, and propose future research needs in the black soil region of Northeast China. Sediment deposition is controlled by the deficit between sediment transport capacity of flow and sediment load. Hence, all factors affecting flow transport capacity and sediment load directly affect sediment deposition. For a specific small watershed, the change in slope gradient along the flow path is the key factor affecting sediment deposition. Shelterbelts, ridge tillage systems, terraces, grass strips, road distribution, ponds and reservoirs, and land-use patterns also influence the spatial distribution and rate of deposition. The trace method has been widely used to quantify sediment deposition in this region. The results of cesium-137 (<sup>137</sup>Cs), lead-210 (<sup>210</sup>Pb), and magnetic susceptibility reveal that serious deposition occurs on the back and foot slopes. Distinct deposition occurs in front of contour shelterbelts. Future studies should focus on the methodology, spatial and temporal variations, dominant influencing factors and their mechanisms, and the potential effects on land productivity within specific small watersheds and across the black soil region. This review provides insights into the sediment deposition process in small watersheds characterized by gentle, long hillslopes.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 1","pages":"Pages 30-35"},"PeriodicalIF":5.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1002016022001023/pdfft?md5=6081cda1ee6305735f9025c7b91abe76&pid=1-s2.0-S1002016022001023-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016022001023","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sediment deposition is one of the most significant processes in small watersheds characterized by gentle long hillslopes in the black soil (Mollisol) region of Northeast China, as indicated by severe ephemeral gully and gully erosion on hillslopes and very low sediment concentrations in river systems. Few reviews have been conducted to summarize the related research in this region. The objectives of this review were to identify the potential factors influencing sediment deposition, review related studies, and propose future research needs in the black soil region of Northeast China. Sediment deposition is controlled by the deficit between sediment transport capacity of flow and sediment load. Hence, all factors affecting flow transport capacity and sediment load directly affect sediment deposition. For a specific small watershed, the change in slope gradient along the flow path is the key factor affecting sediment deposition. Shelterbelts, ridge tillage systems, terraces, grass strips, road distribution, ponds and reservoirs, and land-use patterns also influence the spatial distribution and rate of deposition. The trace method has been widely used to quantify sediment deposition in this region. The results of cesium-137 (137Cs), lead-210 (210Pb), and magnetic susceptibility reveal that serious deposition occurs on the back and foot slopes. Distinct deposition occurs in front of contour shelterbelts. Future studies should focus on the methodology, spatial and temporal variations, dominant influencing factors and their mechanisms, and the potential effects on land productivity within specific small watersheds and across the black soil region. This review provides insights into the sediment deposition process in small watersheds characterized by gentle, long hillslopes.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.