A fourth-order compact difference scheme for solving 2D EFK equation

IF 1.4 Q2 MATHEMATICS, APPLIED
Kai Qu, Shuguang Li, Longjie Lv, Xin Liu
{"title":"A fourth-order compact difference scheme for solving 2D EFK equation","authors":"Kai Qu,&nbsp;Shuguang Li,&nbsp;Longjie Lv,&nbsp;Xin Liu","doi":"10.1016/j.rinam.2024.100441","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a fourth order compact difference scheme for solving the two-dimensional extended Fisher–Kolmogorov (2D EFK) equation is proposed and analyzed. This scheme is three-level implicit, based on a novel time discretization idea of <span><math><mrow><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>≈</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mrow><mo>(</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>+</mo><mn>2</mn><msubsup><mrow><mi>U</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>. The discrete energy functional method is used to obtain prior estimates of numerical solutions in the maximum norm. Furthermore, the convergence of the difference solutions in the maximum norm is analyzed, and the convergence rate is obtained as <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which without any restriction on the grid ratio with time step <span><math><mi>τ</mi></math></span> and mesh size <span><math><mi>h</mi></math></span>. Finally, numerical examples are given to support the theoretical analysis.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100441"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000116/pdfft?md5=086d043a63b5fa6d73ba13132c8b642d&pid=1-s2.0-S2590037424000116-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a fourth order compact difference scheme for solving the two-dimensional extended Fisher–Kolmogorov (2D EFK) equation is proposed and analyzed. This scheme is three-level implicit, based on a novel time discretization idea of u(xi,yj,tn)14(Ui,jn+1+2Ui,jn+Ui,jn1). The discrete energy functional method is used to obtain prior estimates of numerical solutions in the maximum norm. Furthermore, the convergence of the difference solutions in the maximum norm is analyzed, and the convergence rate is obtained as O(τ2+h4), which without any restriction on the grid ratio with time step τ and mesh size h. Finally, numerical examples are given to support the theoretical analysis.

用于求解二维 EFK 方程的四阶紧凑差分方案
本文提出并分析了求解二维扩展费希尔-科尔莫戈罗夫(2D EFK)方程的四阶紧凑差分方案。该方案是三级隐式的,基于 u(xi,yj,tn)≈14(Ui,jn+1+2Ui,jn+Ui,jn-1) 的新颖时间离散化思想。离散能量函数法用于获得最大规范数值解的先验估计值。此外,还分析了最大规范差分解的收敛性,得到收敛率为 O(τ2+h4),这对时间步长 τ 和网格大小 h 的网格比没有任何限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信