Learning collective cell migratory dynamics from a static snapshot with graph neural networks.

ArXiv Pub Date : 2024-11-11
Haiqian Yang, Florian Meyer, Shaoxun Huang, Liu Yang, Cristiana Lungu, Monilola A Olayioye, Markus J Buehler, Ming Guo
{"title":"Learning collective cell migratory dynamics from a static snapshot with graph neural networks.","authors":"Haiqian Yang, Florian Meyer, Shaoxun Huang, Liu Yang, Cristiana Lungu, Monilola A Olayioye, Markus J Buehler, Ming Guo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of structural features that can indicate multicellular motion has been difficult, and existing metrics largely rely on physical instincts. Here we show that using a graph neural network (GNN), the motion of multicellular collectives can be inferred from a static snapshot of cell positions, in both experimental and synthetic datasets.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multicellular self-assembly into functional structures is a dynamic process that is critical in the development and diseases, including embryo development, organ formation, tumor invasion, and others. Being able to infer collective cell migratory dynamics from their static configuration is valuable for both understanding and predicting these complex processes. However, the identification of structural features that can indicate multicellular motion has been difficult, and existing metrics largely rely on physical instincts. Here we show that using a graph neural network (GNN), the motion of multicellular collectives can be inferred from a static snapshot of cell positions, in both experimental and synthetic datasets.

利用深度神经网络从多细胞图中学习动态。
推断多细胞自组装是理解形态发生(包括胚胎、器官组织、肿瘤等)的核心追求。然而,要找出能显示多细胞动态的结构特征却非常困难。在此,我们提议利用基于图的深度神经网络(GNN)的预测能力,发现可以预测动态的重要图特征。为了证明这一点,我们在实验和模拟中应用了物理信息 GNN(piGNN),通过多细胞集体的位置快照来预测它们的运动性。我们证明 piGNN 能够浏览多细胞生命系统的复杂图谱特征,而经典的机理模型则无法做到这一点。随着多细胞数据量的不断增加,我们建议通过合作建立一个多细胞数据库(MDB),从而构建一个大型多细胞图模型(LMGM),用于多细胞组织的通用预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信