Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang
{"title":"A generalized Bayesian optimal interval design for dose optimization in immunotherapy.","authors":"Qing Xia, Kentaro Takeda, Yusuke Yamaguchi, Jun Zhang","doi":"10.1002/pst.2369","DOIUrl":null,"url":null,"abstract":"<p><p>For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"480-494"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.
对于新型免疫肿瘤疗法,剂量试验的主要目的是确定最佳剂量(OD),即在不可预测的剂量-结果(毒性、疗效和免疫反应)关系下,具有足够疗效和免疫反应的可耐受剂量。此外,在剂量寻找过程中,应对多种低度或中度毒性(而非剂量限制性毒性(DLT))和多级疗效进行不同的评估,以确定开发新型免疫肿瘤疗法的真正OD。我们为免疫疗法提出了一种广义贝叶斯最优区间设计,同时考虑疗效和毒性等级以及免疫反应结果。该设计被命名为 gBOIN-ETI 设计,由模型辅助,易于实施,可高效开发免疫疗法。我们通过模拟各种现实环境,将 gBOIN-ETI 的运行特点与肿瘤学领域的其他剂量试验设计进行了比较。我们的模拟结果表明,gBOIN-ETI 设计在各种实际试验环境中,无论是在正确选择 OD 的百分比方面,还是在分配给 OD 的患者平均人数方面,都优于其他现有方法。
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.