Solution NMR Analysis of O-Glycopeptide-Antibody Interaction.

Q4 Biochemistry, Genetics and Molecular Biology
Ryoka Kokubu, Shiho Ohno, Noriyoshi Manabe, Yoshiki Yamaguchi
{"title":"Solution NMR Analysis of O-Glycopeptide-Antibody Interaction.","authors":"Ryoka Kokubu, Shiho Ohno, Noriyoshi Manabe, Yoshiki Yamaguchi","doi":"10.1007/978-1-0716-3670-1_26","DOIUrl":null,"url":null,"abstract":"<p><p>O-Linked glycans potentially play a functional role in cellular recognition events. Recent structural analyses suggest that O-glycosylation can be a specific signal for a lectin receptor which recognizes both the O-glycan and the adjacent polypeptide region. Further, certain antibodies specifically bind to the O-glycosylated peptide. There is growing interest in the mechanism by which O-glycans on proteins are specifically recognized by lectins and antibodies. The recognition system may be common to many O-glycosylated proteins; however, there is limited 3D structural information on the dual recognition of glycan and protein. This chapter describes a solution NMR analysis of the interaction between MUC1 O-glycopeptide and anti-MUC1 antibody MY.1E12.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3670-1_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

O-Linked glycans potentially play a functional role in cellular recognition events. Recent structural analyses suggest that O-glycosylation can be a specific signal for a lectin receptor which recognizes both the O-glycan and the adjacent polypeptide region. Further, certain antibodies specifically bind to the O-glycosylated peptide. There is growing interest in the mechanism by which O-glycans on proteins are specifically recognized by lectins and antibodies. The recognition system may be common to many O-glycosylated proteins; however, there is limited 3D structural information on the dual recognition of glycan and protein. This chapter describes a solution NMR analysis of the interaction between MUC1 O-glycopeptide and anti-MUC1 antibody MY.1E12.

O 型糖肽与抗体相互作用的溶液核磁共振分析
O 型连接聚糖可能在细胞识别事件中发挥功能性作用。最近的结构分析表明,O-糖基化可以成为凝集素受体的特异信号,这种受体既能识别 O-糖,也能识别邻近的多肽区。此外,某些抗体会特异性地与 O 型糖基化肽结合。人们对凝集素和抗体特异性识别蛋白质上的 O 型糖的机制越来越感兴趣。这种识别系统可能是许多 O 型糖基化蛋白质所共有的;然而,关于糖基和蛋白质双重识别的三维结构信息却很有限。本章介绍了 MUC1 O 型糖肽与抗 MUC1 抗体 MY.1E12 之间相互作用的溶液核磁共振分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信