{"title":"Single-cell analysis with childhood and adult systemic lupus erythematosus.","authors":"Jing Wang, Xiran Yang, Yanhua Zhang, Xuemei Jiang, Yanfang Li, Jingjing Cui, Yabin Liao","doi":"10.1080/08916934.2023.2281228","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with systemic lupus erythematosus (SLE), a heterogeneous and chronic autoimmune disease, exhibit unique changes in the complex composition and transcriptional signatures of peripheral blood mononuclear cells (PBMCs). While the mechanism of pathogenesis for both childhood-onset SLE (cSLE) and adult-onset SLE (aSLE) remains unclear, cSLE patients are considered more unpredictable and dangerous than aSLE patients. In this study, we analysed single-cell RNA sequencing data (scRNA-seq) to profile the PBMC clusters of cSLE/aSLE patients and matched healthy donors and compared the PBMC composition and transcriptional variations between the two groups. Our analysis revealed that the PBMC composition and transcriptional variations in cSLE patients were similar to those in aSLE patients. Comparative single-cell transcriptome analysis between healthy donors and SLE patients revealed IFITM3, ISG15, IFI16 and LY6E as potential therapeutic targets for both aSLE and cSLE patients. Additionally, we observed that the percentage of pre-B cells (CD34<sup>-</sup>) was increased in cSLE patients, while the percentage of neutrophil cells was upregulated in aSLE patients. Notably, we found decreased expression of TPM2 in cSLE patients, and similarly, TMEM150B, IQSEC2, CHN2, LRP8 and USP46 were significantly downregulated in neutrophil cells from aSLE patients. Overall, our study highlights the differences in complex PBMC composition and transcriptional profiles between cSLE and aSLE patients, providing potential biomarkers that could aid in diagnosing SLE.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"57 1","pages":"2281228"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2023.2281228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with systemic lupus erythematosus (SLE), a heterogeneous and chronic autoimmune disease, exhibit unique changes in the complex composition and transcriptional signatures of peripheral blood mononuclear cells (PBMCs). While the mechanism of pathogenesis for both childhood-onset SLE (cSLE) and adult-onset SLE (aSLE) remains unclear, cSLE patients are considered more unpredictable and dangerous than aSLE patients. In this study, we analysed single-cell RNA sequencing data (scRNA-seq) to profile the PBMC clusters of cSLE/aSLE patients and matched healthy donors and compared the PBMC composition and transcriptional variations between the two groups. Our analysis revealed that the PBMC composition and transcriptional variations in cSLE patients were similar to those in aSLE patients. Comparative single-cell transcriptome analysis between healthy donors and SLE patients revealed IFITM3, ISG15, IFI16 and LY6E as potential therapeutic targets for both aSLE and cSLE patients. Additionally, we observed that the percentage of pre-B cells (CD34-) was increased in cSLE patients, while the percentage of neutrophil cells was upregulated in aSLE patients. Notably, we found decreased expression of TPM2 in cSLE patients, and similarly, TMEM150B, IQSEC2, CHN2, LRP8 and USP46 were significantly downregulated in neutrophil cells from aSLE patients. Overall, our study highlights the differences in complex PBMC composition and transcriptional profiles between cSLE and aSLE patients, providing potential biomarkers that could aid in diagnosing SLE.
期刊介绍:
Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.