A novel GeoAI-based multidisciplinary model for SpatioTemporal Decision-Making of utility-scale wind–solar installations: To promote green infrastructure in Iraq

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Mourtadha Sarhan Sachit , Helmi Zulhaidi Mohd Shafri , Ahmad Fikri Abdullah , Azmin Shakrine Mohd Rafie , Mohamed Barakat A Gibril
{"title":"A novel GeoAI-based multidisciplinary model for SpatioTemporal Decision-Making of utility-scale wind–solar installations: To promote green infrastructure in Iraq","authors":"Mourtadha Sarhan Sachit ,&nbsp;Helmi Zulhaidi Mohd Shafri ,&nbsp;Ahmad Fikri Abdullah ,&nbsp;Azmin Shakrine Mohd Rafie ,&nbsp;Mohamed Barakat A Gibril","doi":"10.1016/j.ejrs.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The dual use of wind and solar energy holds great promise for low-cost and high-performance green infrastructure. However, for such hybrid systems to operate successfully, comprehensive and simultaneous dimensional planning is required, a goal that single-perspective assessment approaches fail to attain. This paper proposes a novel SpatioTemporal Decision-Making (STDM) model based on Geospatial Artificial Intelligence (GeoAI) for the optimal allocation of onshore wind-solar hybrid plants, with application on a national scale in Iraq. To this end, a wide range of 21 evaluative and restrictive spatial criteria were covered. The temporal synergy factor between renewable resources was considered for the first time in this type of study. Unique global weightings for decision factors were derived using Random Forest (RF) and SHapley Additive exPlanations (SHAP) algorithms supported by sample inventories of wind and solar plants worldwide. Finally, weighted linear combination (WLC) and fuzzy overlay techniques were harnessed in a GIS environment for spatiotemporal suitability mapping of energy systems. According to the RF-SHAP model, the techno-economic criteria demonstrated substantial contributions to the placement of wind and solar systems compared with the socio-environmental criteria. The spatiotemporal suitability map identified three promising opportunities for Iraq at South Dhi-Qar, East Wasit, and West Diyala, with total areas of 780, 2166, and 649 km<sup>2</sup>, respectively. We anticipate that our findings will encourage government agencies, decision-makers, and stakeholders to increase funding for clean energy transition initiatives.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 1","pages":"Pages 120-136"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000073/pdfft?md5=5be2b97f2ea4db49eb56b40f361baafc&pid=1-s2.0-S1110982324000073-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000073","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dual use of wind and solar energy holds great promise for low-cost and high-performance green infrastructure. However, for such hybrid systems to operate successfully, comprehensive and simultaneous dimensional planning is required, a goal that single-perspective assessment approaches fail to attain. This paper proposes a novel SpatioTemporal Decision-Making (STDM) model based on Geospatial Artificial Intelligence (GeoAI) for the optimal allocation of onshore wind-solar hybrid plants, with application on a national scale in Iraq. To this end, a wide range of 21 evaluative and restrictive spatial criteria were covered. The temporal synergy factor between renewable resources was considered for the first time in this type of study. Unique global weightings for decision factors were derived using Random Forest (RF) and SHapley Additive exPlanations (SHAP) algorithms supported by sample inventories of wind and solar plants worldwide. Finally, weighted linear combination (WLC) and fuzzy overlay techniques were harnessed in a GIS environment for spatiotemporal suitability mapping of energy systems. According to the RF-SHAP model, the techno-economic criteria demonstrated substantial contributions to the placement of wind and solar systems compared with the socio-environmental criteria. The spatiotemporal suitability map identified three promising opportunities for Iraq at South Dhi-Qar, East Wasit, and West Diyala, with total areas of 780, 2166, and 649 km2, respectively. We anticipate that our findings will encourage government agencies, decision-makers, and stakeholders to increase funding for clean energy transition initiatives.

Abstract Image

基于 GeoAI 的新型多学科模型,用于公用事业规模风能-太阳能装置的时空决策:在伊拉克推广绿色基础设施
风能和太阳能的双重利用为低成本、高性能的绿色基础设施带来了巨大希望。然而,要使这种混合系统成功运行,需要进行全面、同步的维度规划,而单一视角的评估方法无法实现这一目标。本文提出了一种基于地理空间人工智能(GeoAI)的新型时空决策(STDM)模型,用于陆上风能-太阳能混合发电厂的优化配置,并在伊拉克全国范围内进行了应用。为此,该模型涵盖了 21 项评价性和限制性空间标准。在此类研究中,首次考虑了可再生资源之间的时间协同因素。在全球风能和太阳能发电厂样本清单的支持下,使用随机森林(RF)和SHAPLEY Additive exPlanations(SHAP)算法得出了决策因素的独特全球权重。最后,在地理信息系统(GIS)环境中利用加权线性组合(WLC)和模糊叠加技术绘制了能源系统的时空适宜性地图。根据 RF-SHAP 模型,与社会环境标准相比,技术经济标准对风能和太阳能系统的布局有很大的帮助。时空适宜性地图为伊拉克在南济加尔、东瓦西特和西迪亚拉确定了三个有前途的机会,总面积分别为 780、2166 和 649 平方公里。我们预计,我们的研究结果将鼓励政府机构、决策者和利益相关者增加对清洁能源转型计划的资金投入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信