{"title":"Topology optimization of transient vibroacoustic problems for broadband filter design using cut elements","authors":"Cetin B. Dilgen, Niels Aage","doi":"10.1016/j.finel.2024.104123","DOIUrl":null,"url":null,"abstract":"<div><p>The focus of this article is on shape and topology optimization of transient vibroacoustic problems. The main contribution is a transient problem formulation that enables optimization over wide ranges of frequencies with complex signals, which are often of interest in industry. The work employs time domain methods to realize wide band optimization in the frequency domain. To this end, the objective function is defined in frequency domain where the frequency response of the system is obtained through a fast Fourier transform (FFT) algorithm on the transient response of the system. The work utilizes a parametric level set approach to implicitly define the geometry in which the zero level describes the interface between acoustic and structural domains. A cut element method is used to capture the geometry on a fixed background mesh through utilization of a special integration scheme that accurately resolves the interface. This allows for accurate solutions to strongly coupled vibroacoustic systems without having to re-mesh at each design update. The present work relies on efficient gradient based optimizers where the discrete adjoint method is used to calculate the sensitivities of objective and constraint functions. A thorough explanation of the consistent sensitivity calculation is given involving the FFT operation needed to define the objective function in frequency domain. Finally, the developed framework is applied to various vibroacoustic filter designs and the optimization results are verified using commercial finite element software with a steady state time-harmonic formulation.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168874X24000179/pdfft?md5=366e244323e05f0f4f678d590cb405c1&pid=1-s2.0-S0168874X24000179-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24000179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of this article is on shape and topology optimization of transient vibroacoustic problems. The main contribution is a transient problem formulation that enables optimization over wide ranges of frequencies with complex signals, which are often of interest in industry. The work employs time domain methods to realize wide band optimization in the frequency domain. To this end, the objective function is defined in frequency domain where the frequency response of the system is obtained through a fast Fourier transform (FFT) algorithm on the transient response of the system. The work utilizes a parametric level set approach to implicitly define the geometry in which the zero level describes the interface between acoustic and structural domains. A cut element method is used to capture the geometry on a fixed background mesh through utilization of a special integration scheme that accurately resolves the interface. This allows for accurate solutions to strongly coupled vibroacoustic systems without having to re-mesh at each design update. The present work relies on efficient gradient based optimizers where the discrete adjoint method is used to calculate the sensitivities of objective and constraint functions. A thorough explanation of the consistent sensitivity calculation is given involving the FFT operation needed to define the objective function in frequency domain. Finally, the developed framework is applied to various vibroacoustic filter designs and the optimization results are verified using commercial finite element software with a steady state time-harmonic formulation.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.