Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors

IF 2.5 3区 工程技术 Q2 MECHANICS
A. Encinas-Bartos, G. Haller
{"title":"Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors","authors":"A. Encinas-Bartos,&nbsp;G. Haller","doi":"10.1016/j.euromechflu.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>We derive asymptotic estimates for the projection of the vorticity onto principal directions of material stretching in 3D flows. In flows with pointwise bounded vorticity, these estimates predict vorticity alignment with Lyapunov vectors along trajectories with positive Lyapunov exponents. Specifically, we find that in inviscid flows with conservative body forces, the vorticity exactly aligns with the intersection of the planes orthogonal to the dominant forward and backward Lyapunov vectors along trajectories with positive Lyapunov exponent. Furthermore, we derive asymptotic estimates for the vorticity alignment with the intermediate eigenvector of the rate-of-strain tensor for viscous flows under general forcing. We illustrate these results on explicit solutions of Euler’s equation and on direct numerical simulations of homogeneous isotropic turbulence.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"105 ","pages":"Pages 259-274"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000281/pdfft?md5=68581c6f83ccaf9e9941f23a4dc5c17f&pid=1-s2.0-S0997754624000281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000281","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive asymptotic estimates for the projection of the vorticity onto principal directions of material stretching in 3D flows. In flows with pointwise bounded vorticity, these estimates predict vorticity alignment with Lyapunov vectors along trajectories with positive Lyapunov exponents. Specifically, we find that in inviscid flows with conservative body forces, the vorticity exactly aligns with the intersection of the planes orthogonal to the dominant forward and backward Lyapunov vectors along trajectories with positive Lyapunov exponent. Furthermore, we derive asymptotic estimates for the vorticity alignment with the intermediate eigenvector of the rate-of-strain tensor for viscous flows under general forcing. We illustrate these results on explicit solutions of Euler’s equation and on direct numerical simulations of homogeneous isotropic turbulence.

利用李亚普诺夫矢量和应变速率特征向量进行涡度排列
我们推导出了三维流动中涡度在材料拉伸主方向上投影的渐近估计值。在具有点状有界涡度的流动中,这些估计值预示着涡度将沿着具有正 Lyapunov 指数的轨迹与 Lyapunov 向量对齐。具体地说,我们发现在具有保守体力的不粘性流中,涡度正好与具有正 Lyapunov 指数的轨迹上的主导前向和后向 Lyapunov 向量正交平面的交点对齐。此外,我们还推导出了在一般作用力下粘性流的涡度与应变速率张量中间特征向量对齐的渐近估计值。我们用欧拉方程的显式解和同质各向同性湍流的直接数值模拟来说明这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信