Bingyi Xie;Honghui Xu;YongJoon Joe;Daehee Seo;Zhipeng Cai
{"title":"Lightweight Super-Resolution Model for Complete Model Copyright Protection","authors":"Bingyi Xie;Honghui Xu;YongJoon Joe;Daehee Seo;Zhipeng Cai","doi":"10.26599/TST.2023.9010082","DOIUrl":null,"url":null,"abstract":"Deep learning based techniques are broadly used in various applications, which exhibit superior performance compared to traditional methods. One of the mainstream topics in computer vision is the image super-resolution task. In recent deep learning neural networks, the number of parameters in each convolution layer has increased along with more layers and feature maps, resulting in better image super-resolution performance. In today's era, numerous service providers offer super-resolution services to users, providing them with remarkable convenience. However, the availability of open-source super-resolution services exposes service providers to the risk of copyright infringement, as the complete model could be vulnerable to leakage. Therefore, safeguarding the copyright of the complete model is a non-trivial concern. To tackle this issue, this paper presents a lightweight model as a substitute for the original complete model in image super-resolution. This research has identified smaller networks that can deliver impressive performance, while protecting the original model's copyright. Finally, comprehensive experiments are conducted on multiple datasets to demonstrate the superiority of the proposed approach in generating super-resolution images even using lightweight neural networks.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 4","pages":"1194-1205"},"PeriodicalIF":6.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10367775","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10367775/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning based techniques are broadly used in various applications, which exhibit superior performance compared to traditional methods. One of the mainstream topics in computer vision is the image super-resolution task. In recent deep learning neural networks, the number of parameters in each convolution layer has increased along with more layers and feature maps, resulting in better image super-resolution performance. In today's era, numerous service providers offer super-resolution services to users, providing them with remarkable convenience. However, the availability of open-source super-resolution services exposes service providers to the risk of copyright infringement, as the complete model could be vulnerable to leakage. Therefore, safeguarding the copyright of the complete model is a non-trivial concern. To tackle this issue, this paper presents a lightweight model as a substitute for the original complete model in image super-resolution. This research has identified smaller networks that can deliver impressive performance, while protecting the original model's copyright. Finally, comprehensive experiments are conducted on multiple datasets to demonstrate the superiority of the proposed approach in generating super-resolution images even using lightweight neural networks.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.