Amine Sadikine , Bogdan Badic , Jean-Pierre Tasu , Vincent Noblet , Pascal Ballet , Dimitris Visvikis , Pierre-Henri Conze
{"title":"Improving abdominal image segmentation with overcomplete shape priors","authors":"Amine Sadikine , Bogdan Badic , Jean-Pierre Tasu , Vincent Noblet , Pascal Ballet , Dimitris Visvikis , Pierre-Henri Conze","doi":"10.1016/j.compmedimag.2024.102356","DOIUrl":null,"url":null,"abstract":"<div><p>The extraction of abdominal structures using deep learning has recently experienced a widespread interest in medical image analysis. Automatic abdominal organ and vessel segmentation is highly desirable to guide clinicians in computer-assisted diagnosis, therapy, or surgical planning. Despite a good ability to extract large organs, the capacity of U-Net inspired architectures to automatically delineate smaller structures remains a major issue, especially given the increase in receptive field size as we go deeper into the network. To deal with various abdominal structure sizes while exploiting efficient geometric constraints, we present a novel approach that integrates into deep segmentation shape priors from a semi-overcomplete convolutional auto-encoder (S-OCAE) embedding. Compared to standard convolutional auto-encoders (CAE), it exploits an over-complete branch that projects data onto higher dimensions to better characterize anatomical structures with a small spatial extent. Experiments on abdominal organs and vessel delineation performed on various publicly available datasets highlight the effectiveness of our method compared to state-of-the-art, including U-Net trained without and with shape priors from a traditional CAE. Exploiting a semi-overcomplete convolutional auto-encoder embedding as shape priors improves the ability of deep segmentation models to provide realistic and accurate abdominal structure contours.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"113 ","pages":"Article 102356"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000338/pdfft?md5=e83e8e8de56fb1f5b580a68d5fed492b&pid=1-s2.0-S0895611124000338-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The extraction of abdominal structures using deep learning has recently experienced a widespread interest in medical image analysis. Automatic abdominal organ and vessel segmentation is highly desirable to guide clinicians in computer-assisted diagnosis, therapy, or surgical planning. Despite a good ability to extract large organs, the capacity of U-Net inspired architectures to automatically delineate smaller structures remains a major issue, especially given the increase in receptive field size as we go deeper into the network. To deal with various abdominal structure sizes while exploiting efficient geometric constraints, we present a novel approach that integrates into deep segmentation shape priors from a semi-overcomplete convolutional auto-encoder (S-OCAE) embedding. Compared to standard convolutional auto-encoders (CAE), it exploits an over-complete branch that projects data onto higher dimensions to better characterize anatomical structures with a small spatial extent. Experiments on abdominal organs and vessel delineation performed on various publicly available datasets highlight the effectiveness of our method compared to state-of-the-art, including U-Net trained without and with shape priors from a traditional CAE. Exploiting a semi-overcomplete convolutional auto-encoder embedding as shape priors improves the ability of deep segmentation models to provide realistic and accurate abdominal structure contours.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.