Analysis of a Modified Regularity-Preserving Euler Scheme for Parabolic Semilinear SPDEs: Total Variation Error Bounds for the Numerical Approximation of the Invariant Distribution
{"title":"Analysis of a Modified Regularity-Preserving Euler Scheme for Parabolic Semilinear SPDEs: Total Variation Error Bounds for the Numerical Approximation of the Invariant Distribution","authors":"Charles-Edouard Bréhier","doi":"10.1007/s10208-024-09644-z","DOIUrl":null,"url":null,"abstract":"<p>We propose a modification of the standard linear implicit Euler integrator for the weak approximation of parabolic semilinear stochastic PDEs driven by additive space-time white noise. This new method can easily be combined with a finite difference method for the spatial discretization. The proposed method is shown to have improved qualitative properties compared with the standard method. First, for any time-step size, the spatial regularity of the solution is preserved, at all times. Second, the proposed method preserves the Gaussian invariant distribution of the infinite dimensional Ornstein–Uhlenbeck process obtained when the nonlinearity is removed, for any time-step size. The weak order of convergence of the proposed method is shown to be equal to 1/2 in a general setting, like for the standard Euler scheme. A stronger weak approximation result is obtained when considering the approximation of a Gibbs invariant distribution, when the nonlinearity is a gradient: one obtains an approximation in total variation distance of order 1/2, which does not hold for the standard method. This is the first result of this type in the literature and this is the major and most original result of this article.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"98 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09644-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a modification of the standard linear implicit Euler integrator for the weak approximation of parabolic semilinear stochastic PDEs driven by additive space-time white noise. This new method can easily be combined with a finite difference method for the spatial discretization. The proposed method is shown to have improved qualitative properties compared with the standard method. First, for any time-step size, the spatial regularity of the solution is preserved, at all times. Second, the proposed method preserves the Gaussian invariant distribution of the infinite dimensional Ornstein–Uhlenbeck process obtained when the nonlinearity is removed, for any time-step size. The weak order of convergence of the proposed method is shown to be equal to 1/2 in a general setting, like for the standard Euler scheme. A stronger weak approximation result is obtained when considering the approximation of a Gibbs invariant distribution, when the nonlinearity is a gradient: one obtains an approximation in total variation distance of order 1/2, which does not hold for the standard method. This is the first result of this type in the literature and this is the major and most original result of this article.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.