Sylviane de Viron, Laura Trotta, William Steijn, Steve Young, Marc Buyse
{"title":"Does Central Statistical Monitoring Improve Data Quality? An Analysis of 1,111 Sites in 159 Clinical Trials.","authors":"Sylviane de Viron, Laura Trotta, William Steijn, Steve Young, Marc Buyse","doi":"10.1007/s43441-024-00613-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Central monitoring aims at improving the quality of clinical research by pro-actively identifying risks and remediating emerging issues in the conduct of a clinical trial that may have an adverse impact on patient safety and/or the reliability of trial results. This paper, focusing on statistical data monitoring (SDM), is the second of a series that attempts to quantify the impact of central monitoring in clinical trials.</p><p><strong>Material and methods: </strong>Quality improvement was assessed in studies using SDM from a single large central monitoring platform. The analysis focused on a total of 1111 sites that were identified as at-risk by the SDM tests and for which the study teams conducted a follow-up investigation. These sites were taken from 159 studies conducted by 23 different clinical development organizations (including both sponsor companies and contract research organizations). Two quality improvement metrics were assessed for each selected site, one based on a site data inconsistency score (DIS, overall -log<sub>10</sub> P-value of the site compared with all other sites) and the other based on the observed metric value associated with each risk signal.</p><p><strong>Results: </strong>The SDM quality metrics showed improvement in 83% (95% CI, 80-85%) of the sites across therapeutic areas and study phases (primarily phases 2 and 3). In contrast, only 56% (95% CI, 41-70%) of sites showed improvement in 2 historical studies that did not use SDM during study conduct.</p><p><strong>Conclusion: </strong>The results of this analysis provide clear quantitative evidence supporting the hypothesis that the use of SDM in central monitoring is leading to improved quality in clinical trial conduct and associated data across participating sites.</p>","PeriodicalId":23084,"journal":{"name":"Therapeutic innovation & regulatory science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic innovation & regulatory science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43441-024-00613-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Central monitoring aims at improving the quality of clinical research by pro-actively identifying risks and remediating emerging issues in the conduct of a clinical trial that may have an adverse impact on patient safety and/or the reliability of trial results. This paper, focusing on statistical data monitoring (SDM), is the second of a series that attempts to quantify the impact of central monitoring in clinical trials.
Material and methods: Quality improvement was assessed in studies using SDM from a single large central monitoring platform. The analysis focused on a total of 1111 sites that were identified as at-risk by the SDM tests and for which the study teams conducted a follow-up investigation. These sites were taken from 159 studies conducted by 23 different clinical development organizations (including both sponsor companies and contract research organizations). Two quality improvement metrics were assessed for each selected site, one based on a site data inconsistency score (DIS, overall -log10 P-value of the site compared with all other sites) and the other based on the observed metric value associated with each risk signal.
Results: The SDM quality metrics showed improvement in 83% (95% CI, 80-85%) of the sites across therapeutic areas and study phases (primarily phases 2 and 3). In contrast, only 56% (95% CI, 41-70%) of sites showed improvement in 2 historical studies that did not use SDM during study conduct.
Conclusion: The results of this analysis provide clear quantitative evidence supporting the hypothesis that the use of SDM in central monitoring is leading to improved quality in clinical trial conduct and associated data across participating sites.
期刊介绍:
Therapeutic Innovation & Regulatory Science (TIRS) is the official scientific journal of DIA that strives to advance medical product discovery, development, regulation, and use through the publication of peer-reviewed original and review articles, commentaries, and letters to the editor across the spectrum of converting biomedical science into practical solutions to advance human health.
The focus areas of the journal are as follows:
Biostatistics
Clinical Trials
Product Development and Innovation
Global Perspectives
Policy
Regulatory Science
Product Safety
Special Populations