Diversity and antigenic potentials of Mycoplasmopsis bovis secreted and outer membrane proteins within a core genome of strains isolated from North American bison and cattle.
IF 2.3 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Emily L Wynn, A Springer Browne, Michael L Clawson
{"title":"Diversity and antigenic potentials of <i>Mycoplasmopsis bovis</i> secreted and outer membrane proteins within a core genome of strains isolated from North American bison and cattle.","authors":"Emily L Wynn, A Springer Browne, Michael L Clawson","doi":"10.1139/gen-2023-0084","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycoplasmopsis bovis</i> is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. <i>M. bovis</i> is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious <i>M. bovis</i> vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 <i>M. bovis</i> strains isolated from cattle (<i>n</i> = 202) and bison (<i>n</i> = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"204-209"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2023-0084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycoplasmopsis bovis is a worldwide economically important pathogen of cattle that can cause or indirectly contribute to bovine respiratory disease. M. bovis is also a primary etiological agent of respiratory disease in bison with high mortality rates. A major challenge in the development of an efficacious M. bovis vaccine is the design of antigens that contain both MHC-1 and MHC-2 T-cell epitopes, and that account for population level diversity within the species. Publicly available genomes and sequence read archive libraries of 381 M. bovis strains isolated from cattle (n = 202) and bison (n = 179) in North America were used to identify a core genome of 575 genes, including 38 that encode either known or predicted secreted or outer membrane proteins. The antigenic potentials of the proteins were characterized by the presence and strength of their T-cell epitopes, and their protein variant diversity at the population-level. The proteins had surprisingly low diversity and varying predictive levels of T-cell antigenicity. These results provide a reference for the selection or design of antigens for vaccine testing against strains infecting North American cattle and bison.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.