{"title":"Implementation of mDoE-methods to a microcarrier-based expansion processes for mesenchymal stem cells","authors":"Kim B. Kuchemüller, Ralf Pörtner, Johannes Möller","doi":"10.1002/btpr.3429","DOIUrl":null,"url":null,"abstract":"<p>The need for advanced therapy medicinal products (ATMPs) has gained increased attention in recent years. In this respect, a well-designed cell expansion process is needed to efficiently manufacture the required number of cells with the desired product quality. This step is challenging due to the biological complexity of the respective primary cell (e.g., mesenchymal stem cells (MSC)) and the usage of microcarrier-based expansion systems. One accelerating approach for process design is model-assisted Design of Experiments (mDoE) combining mathematical process models and statistical tools. In this study, the mDoE workflow was used for the development of an expansion processes with human immortalized mesenchymal stem cells (hMSC-TERT) and the aim of maximizing cell yield assuming only a limited amount of prior knowledge at a very early stage of development. First, suitable microcarriers for expansion in shake flasks were screened and the differentiation of the cells was proven. Second, initial experiments were performed to generate prior knowledge, which was then used to set up the mathematical model and to estimate the model parameters. Finally, the mDoE was used to determine and evaluate the design space to be performed experimentally. Overall, a cell expansion process using microcarriers in a shake flask culture was successfully implemented and a significant increase in cell yield (up to 6,2-fold) was achieved compared to literature.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"40 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3429","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3429","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The need for advanced therapy medicinal products (ATMPs) has gained increased attention in recent years. In this respect, a well-designed cell expansion process is needed to efficiently manufacture the required number of cells with the desired product quality. This step is challenging due to the biological complexity of the respective primary cell (e.g., mesenchymal stem cells (MSC)) and the usage of microcarrier-based expansion systems. One accelerating approach for process design is model-assisted Design of Experiments (mDoE) combining mathematical process models and statistical tools. In this study, the mDoE workflow was used for the development of an expansion processes with human immortalized mesenchymal stem cells (hMSC-TERT) and the aim of maximizing cell yield assuming only a limited amount of prior knowledge at a very early stage of development. First, suitable microcarriers for expansion in shake flasks were screened and the differentiation of the cells was proven. Second, initial experiments were performed to generate prior knowledge, which was then used to set up the mathematical model and to estimate the model parameters. Finally, the mDoE was used to determine and evaluate the design space to be performed experimentally. Overall, a cell expansion process using microcarriers in a shake flask culture was successfully implemented and a significant increase in cell yield (up to 6,2-fold) was achieved compared to literature.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.