Awa Diop, Alind Gupta, Sabrina Mueller, Louis Dron, Ofir Harari, Heather Berringer, Vinusha Kalatharan, Jay J H Park, Miceline Mésidor, Denis Talbot
{"title":"Assessing the performance of group-based trajectory modeling method to discover different patterns of medication adherence.","authors":"Awa Diop, Alind Gupta, Sabrina Mueller, Louis Dron, Ofir Harari, Heather Berringer, Vinusha Kalatharan, Jay J H Park, Miceline Mésidor, Denis Talbot","doi":"10.1002/pst.2365","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication-use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group-based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K-means. A time-varying treatment was generated as a quadratic function of time, baseline, and time-varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K-means using the absolute bias, the variance, the c-statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K-means.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"511-529"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2365","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication-use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group-based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K-means. A time-varying treatment was generated as a quadratic function of time, baseline, and time-varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K-means using the absolute bias, the variance, the c-statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K-means.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.