The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics.

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Basic Research in Cardiology Pub Date : 2024-04-01 Epub Date: 2024-02-08 DOI:10.1007/s00395-024-01033-5
Imke Jansen, Rachel Cahalane, Ranmadusha Hengst, Ali Akyildiz, Eric Farrell, Frank Gijsen, Elena Aikawa, Kim van der Heiden, Tamar Wissing
{"title":"The interplay of collagen, macrophages, and microcalcification in atherosclerotic plaque cap rupture mechanics.","authors":"Imke Jansen, Rachel Cahalane, Ranmadusha Hengst, Ali Akyildiz, Eric Farrell, Frank Gijsen, Elena Aikawa, Kim van der Heiden, Tamar Wissing","doi":"10.1007/s00395-024-01033-5","DOIUrl":null,"url":null,"abstract":"<p><p>The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"193-213"},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01033-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.

Abstract Image

动脉粥样硬化斑块帽破裂力学中胶原蛋白、巨噬细胞和微钙化的相互作用。
覆盖在脂质池和/或坏死核心上的动脉粥样硬化斑块帽破裂可导致血栓性心血管事件。从本质上讲,斑块帽的破裂是一种机械事件,当局部应力超过局部组织强度时就会发生。然而,由于斑块帽间和斑块帽内的异质性,导致最终的斑块帽强度各不相同,因此缺乏对有破裂风险的斑块的正确评估。参与组织强度的重要因素包括承重的胶原基质、作为细胞外基质降解主要促进因素的巨噬细胞以及可加剧局部应力、增加组织破裂倾向的沉积物--微钙化。本综述总结了这些成分各自在组织力学中的作用以及它们之间的相互作用。我们认为,为了改进风险评估,需要更好地了解这些单个成分的作用以及它们对组织帽力学的相互关系。最后,我们讨论了未来可能采取的步骤,包括多学科综合方法、多因素三维体外模型系统以及成像技术的进步。所获得的知识最终将用于帮助诊断、预防和治疗动脉粥样硬化性冠帽破裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信