Divisibility among power matrices associated with multiplicative functions

Pub Date : 2024-02-07 DOI:10.1080/03081087.2024.2311257
Siao A. Hong, Guangyan Y. Zhu
{"title":"Divisibility among power matrices associated with multiplicative functions","authors":"Siao A. Hong, Guangyan Y. Zhu","doi":"10.1080/03081087.2024.2311257","DOIUrl":null,"url":null,"abstract":"Let a, b and n be positive integers and let S={x1,…,xn} be a set of n distinct positive integers. For x∈S, one defines GS(x)={y∈S:y<x,y|xand(y|z|x,z∈S)⇒z∈{y,x}}. For any arithmetic function f and a...","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03081087.2024.2311257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let a, b and n be positive integers and let S={x1,…,xn} be a set of n distinct positive integers. For x∈S, one defines GS(x)={y∈S:y
分享
查看原文
与乘法函数相关的幂矩阵之间的可分性
设 a、b 和 n 为正整数,S={x1,...,xn} 为 n 个不同正整数的集合。对于 x∈S,定义 GS(x)={y∈S:y
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信