{"title":"Aerodynamics on a faithful hindwing model of a migratory dragonfly based on 3D scan data","authors":"Yuma Narita , Kazuhisa Chiba","doi":"10.1016/j.jfluidstructs.2024.104080","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we examined the aerodynamics around the hindwing of a faithfully reproduced Pantala Flavescens (globe wanderer) under gliding conditions. The dragonfly wing is corrugated, with numerous veins running through the entire wing. This convexoconcave geometry improves the lift-to-drag ratio under low Reynolds number conditions. However, until now, aerodynamic analyses have only been performed on 2D chordwise cross-sections of the wing and pseudo-3D shapes extending the profiles spanwise. The aerodynamic performance of a 3D geometry that faithfully replicates all wing veins has yet to be investigated. Therefore, we prepared a faithful analytical model by 3D scanning the hindwing of a Pantala Flavescens specimen; as a migratory dragonfly, it is capable of long-duration and long-distance flight. In our simulation results, the V-shaped groove formed by the large wing veins was covered by separation vortices, resulting in a pseudo-smooth wing surface. The role of the differently-sized wing veins is supposedly to inhibit separation. The faithful reproduction of the wings provides a better understanding of the 3D flow structure and directly leads to a precise estimation of the underlying aerodynamic characteristics. Accurate performance must be evaluated by simulating a faithful geometry in low angle of attacks, where aerodynamic efficiency is required for long-distance flight.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"125 ","pages":"Article 104080"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088997462400015X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we examined the aerodynamics around the hindwing of a faithfully reproduced Pantala Flavescens (globe wanderer) under gliding conditions. The dragonfly wing is corrugated, with numerous veins running through the entire wing. This convexoconcave geometry improves the lift-to-drag ratio under low Reynolds number conditions. However, until now, aerodynamic analyses have only been performed on 2D chordwise cross-sections of the wing and pseudo-3D shapes extending the profiles spanwise. The aerodynamic performance of a 3D geometry that faithfully replicates all wing veins has yet to be investigated. Therefore, we prepared a faithful analytical model by 3D scanning the hindwing of a Pantala Flavescens specimen; as a migratory dragonfly, it is capable of long-duration and long-distance flight. In our simulation results, the V-shaped groove formed by the large wing veins was covered by separation vortices, resulting in a pseudo-smooth wing surface. The role of the differently-sized wing veins is supposedly to inhibit separation. The faithful reproduction of the wings provides a better understanding of the 3D flow structure and directly leads to a precise estimation of the underlying aerodynamic characteristics. Accurate performance must be evaluated by simulating a faithful geometry in low angle of attacks, where aerodynamic efficiency is required for long-distance flight.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.