The major inducible small heat shock protein HSP20-3 in the tardigrade Ramazzottius varieornatus forms filament-like structures and is an active chaperone
Mohammad Al-Ansari , Taylor Fitzsimons , Wenbin Wei , Martin W. Goldberg , Takekazu Kunieda , Roy A. Quinlan
{"title":"The major inducible small heat shock protein HSP20-3 in the tardigrade Ramazzottius varieornatus forms filament-like structures and is an active chaperone","authors":"Mohammad Al-Ansari , Taylor Fitzsimons , Wenbin Wei , Martin W. Goldberg , Takekazu Kunieda , Roy A. Quinlan","doi":"10.1016/j.cstres.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The tardigrade <em>Ramazzottius varieornatus</em> has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in <em>R. varieornatus</em>, HSP20–3 and HSP20–6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 <sup>0</sup>C of adult tardigrades with HSP20–3 being one of the most highly upregulated gene in the whole transcriptome. Both <em>R. varieornatus</em> sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20–3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20–3 and HSP20–6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20–3 formed filament-like structures. The particles and filament-like structures formed by HSP20–3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20–3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20–3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20–3 to protein condensate formation.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 51-65"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814523022435/pdfft?md5=23b54decf36a98c576836709e36a02a9&pid=1-s2.0-S1355814523022435-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814523022435","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tardigrade Ramazzottius varieornatus has remarkable resilience to a range of environmental stresses. In this study, we have characterised two members of the small heat shock protein (sHSP) family in R. varieornatus, HSP20–3 and HSP20–6. These are the most highly upregulated sHSPs in response to a 24 h heat shock at 35 0C of adult tardigrades with HSP20–3 being one of the most highly upregulated gene in the whole transcriptome. Both R. varieornatus sHSPs and the human sHSP, CRYAB (HSPB5), were produced recombinantly for comparative structure-function studies. HSP20–3 exhibited a superior chaperone activity than human CRYAB in a heat-induced protein aggregation assay. Both tardigrade sHSPs also formed larger oligomers than CRYAB as assessed by size exclusion chromatography and transmission electron microscopy of negatively stained samples. Whilst both HSP20–3 and HSP20–6 formed particles that were variable in size and larger than the particles formed by CRYAB, only HSP20–3 formed filament-like structures. The particles and filament-like structures formed by HSP20–3 appear inter-related as the filament-like structures often had particles located at their ends. Sequence analyses identified two unique features; an insertion in the middle region of the N-terminal domain (NTD) and preceding the critical-sequence identified in CRYAB, as well as a repeated QNTN-motif located in the C-terminal domain of HSP20–3. The NTD insertion is expected to affect protein-protein interactions and subunit oligomerisation. Removal of the repeated QNTN-motif abolished HSP20–3 chaperone activity and also affected the assembly of the filament-like structures. We discuss the potential contribution of HSP20–3 to protein condensate formation.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.