Ashleigh Arton , Ernesto Carrella , Jens Koed Madsen , Richard M. Bailey
{"title":"Triggering the tragedy: The simulated effects of alternative fisher goals on marine fisheries and fisheries policy","authors":"Ashleigh Arton , Ernesto Carrella , Jens Koed Madsen , Richard M. Bailey","doi":"10.1016/j.ecocom.2023.101070","DOIUrl":null,"url":null,"abstract":"<div><p>Avoiding the ‘tragedy of the commons’ remains a challenge in many natural resource systems, and open-access fisheries are well-studied in this context. Here, an agent-based model is used to investigate how variation in fisher goals change what policies best solve the tragedy. When fishers’ goals are easily satisfied, commons problems are avoided without management interventions, but the imposition of quota limits triggers the tragedy. Thus, commons problems are not necessarily inevitable and sophisticated governance institutions or regulations are not always required to manage them; the same policy may prevent the tragedy or trigger it, depending on the fisher's goals. Given that it is difficult to ascertain them, by using a simulation model we can find patterns that help us identify fishers' goals and incorporate these patterns within our management procedure. This can assist adaptive management to better incorporate behaviour into policy evaluation.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"57 ","pages":"Article 101070"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1476945X23000429/pdfft?md5=f03a9a530c3fc8629e66e1f2dee6a905&pid=1-s2.0-S1476945X23000429-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X23000429","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Avoiding the ‘tragedy of the commons’ remains a challenge in many natural resource systems, and open-access fisheries are well-studied in this context. Here, an agent-based model is used to investigate how variation in fisher goals change what policies best solve the tragedy. When fishers’ goals are easily satisfied, commons problems are avoided without management interventions, but the imposition of quota limits triggers the tragedy. Thus, commons problems are not necessarily inevitable and sophisticated governance institutions or regulations are not always required to manage them; the same policy may prevent the tragedy or trigger it, depending on the fisher's goals. Given that it is difficult to ascertain them, by using a simulation model we can find patterns that help us identify fishers' goals and incorporate these patterns within our management procedure. This can assist adaptive management to better incorporate behaviour into policy evaluation.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity