Nonlinear Rydberg exciton-polaritons in Cu2O microcavities.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy
Maxim Makhonin, Anthonin Delphan, Kok Wee Song, Paul Walker, Tommi Isoniemi, Peter Claronino, Konstantinos Orfanakis, Sai Kiran Rajendran, Hamid Ohadi, Julian Heckötter, Marc Assmann, Manfred Bayer, Alexander Tartakovskii, Maurice Skolnick, Oleksandr Kyriienko, Dmitry Krizhanovskii
{"title":"Nonlinear Rydberg exciton-polaritons in Cu<sub>2</sub>O microcavities.","authors":"Maxim Makhonin, Anthonin Delphan, Kok Wee Song, Paul Walker, Tommi Isoniemi, Peter Claronino, Konstantinos Orfanakis, Sai Kiran Rajendran, Hamid Ohadi, Julian Heckötter, Marc Assmann, Manfred Bayer, Alexander Tartakovskii, Maurice Skolnick, Oleksandr Kyriienko, Dmitry Krizhanovskii","doi":"10.1038/s41377-024-01382-9","DOIUrl":null,"url":null,"abstract":"<p><p>Rydberg excitons (analogues of Rydberg atoms in condensed matter systems) are highly excited bound electron-hole states with large Bohr radii. The interaction between them as well as exciton coupling to light may lead to strong optical nonlinearity, with applications in sensing and quantum information processing. Here, we achieve strong effective photon-photon interactions (Kerr-like optical nonlinearity) via the Rydberg blockade phenomenon and the hybridisation of excitons and photons forming polaritons in a Cu2O-filled microresonator. Under pulsed resonant excitation polariton resonance frequencies are renormalised due to the reduction of the photon-exciton coupling with increasing exciton density. Theoretical analysis shows that the Rydberg blockade plays a major role in the experimentally observed scaling of the polariton nonlinearity coefficient as ∝ n<sup>4.4±1.8</sup> for principal quantum numbers up to n = 7. Such high principal quantum numbers studied in a polariton system for the first time are essential for realisation of high Rydberg optical nonlinearities, which paves the way towards quantum optical applications and fundamental studies of strongly correlated photonic (polaritonic) states in a solid state system.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"47"},"PeriodicalIF":19.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01382-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Rydberg excitons (analogues of Rydberg atoms in condensed matter systems) are highly excited bound electron-hole states with large Bohr radii. The interaction between them as well as exciton coupling to light may lead to strong optical nonlinearity, with applications in sensing and quantum information processing. Here, we achieve strong effective photon-photon interactions (Kerr-like optical nonlinearity) via the Rydberg blockade phenomenon and the hybridisation of excitons and photons forming polaritons in a Cu2O-filled microresonator. Under pulsed resonant excitation polariton resonance frequencies are renormalised due to the reduction of the photon-exciton coupling with increasing exciton density. Theoretical analysis shows that the Rydberg blockade plays a major role in the experimentally observed scaling of the polariton nonlinearity coefficient as ∝ n4.4±1.8 for principal quantum numbers up to n = 7. Such high principal quantum numbers studied in a polariton system for the first time are essential for realisation of high Rydberg optical nonlinearities, which paves the way towards quantum optical applications and fundamental studies of strongly correlated photonic (polaritonic) states in a solid state system.

Abstract Image

Cu2O 微腔中的非线性 Rydberg 激子-极化子。
里德伯激子(凝聚态系统中里德伯原子的类似物)是高度激发的束缚电子-空穴态,具有很大的玻尔半径。它们之间的相互作用以及激子与光的耦合可能导致强光学非线性,并应用于传感和量子信息处理。在这里,我们通过雷德贝格封锁现象以及在充满铜氧化物的微谐振器中形成极化子的激子和光子杂化,实现了强有效光子-光子相互作用(类克尔光学非线性)。在脉冲共振激励下,由于光子-激子耦合随着激子密度的增加而降低,极化子共振频率被重新规范化。理论分析表明,在实验观察到的极化子非线性系数缩放中,雷德贝格封锁起了主要作用,当主量子数达到 n = 7 时,其缩放为 ∝ n4.4±1.8。首次在极化子系统中研究出如此高的主量子数对于实现高雷德伯格光学非线性至关重要,这为量子光学应用和固态系统中强相关光子(极化子)态的基础研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信