Insights into the crystal structure investigation and virtual screening approach of quinoxaline derivatives as potent against c-Jun N-terminal kinases 1.
Shaaban K Mohamed, Subramani Karthikeyan, Omran A Omran, Atazaz Ahsin, Hanan Salah, Joel T Mague, Rashad Al-Salahi, Youness El Bakri
{"title":"Insights into the crystal structure investigation and virtual screening approach of quinoxaline derivatives as potent against c-Jun N-terminal kinases 1.","authors":"Shaaban K Mohamed, Subramani Karthikeyan, Omran A Omran, Atazaz Ahsin, Hanan Salah, Joel T Mague, Rashad Al-Salahi, Youness El Bakri","doi":"10.1080/07391102.2024.2305317","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (<b>2</b>) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (<b>3</b>) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed <i>via</i> natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (β<sub>o</sub>) indicates nonlinear optical (NLO) properties for <b>2</b> and <b>3</b>. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4784-4803"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2305317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (2) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (3) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed via natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (βo) indicates nonlinear optical (NLO) properties for 2 and 3. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.