Kaufman and Falconer Estimates for Radial Projections and a Continuum Version of Beck’s Theorem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tuomas Orponen, Pablo Shmerkin, Hong Wang
{"title":"Kaufman and Falconer Estimates for Radial Projections and a Continuum Version of Beck’s Theorem","authors":"Tuomas Orponen, Pablo Shmerkin, Hong Wang","doi":"10.1007/s00039-024-00660-3","DOIUrl":null,"url":null,"abstract":"<p>We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let <span>\\(X,Y \\subset \\mathbb{R}^{2}\\)</span> be non-empty Borel sets. If <i>X</i> is not contained in any line, we prove that </p><span>$$ \\sup _{x \\in X} \\dim _{\\mathrm {H}}\\pi _{x}(Y \\, \\setminus \\, \\{x\\}) \\geq \\min \\{ \\dim _{\\mathrm {H}}X,\\dim _{\\mathrm {H}}Y,1\\}. $$</span><p> If dim<sub>H</sub><i>Y</i>&gt;1, we have the following improved lower bound: </p><span>$$ \\sup _{x \\in X} \\dim _{\\mathrm {H}}\\pi _{x}(Y \\, \\setminus \\, \\{x\\}) \\geq \\min \\{ \\dim _{\\mathrm {H}}X + \\dim _{\\mathrm {H}}Y - 1,1\\}. $$</span><p> Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if <span>\\(X \\subset \\mathbb{R}^{2}\\)</span> is a Borel set with the property that dim<sub>H</sub>(<i>X</i> ∖ <i>ℓ</i>)=dim<sub>H</sub><i>X</i> for all lines <span>\\(\\ell \\subset \\mathbb{R}^{2}\\)</span>, then the line set spanned by <i>X</i> has Hausdorff dimension at least min{2dim<sub>H</sub><i>X</i>,2}.</p><p>While the results above concern <span>\\(\\mathbb{R}^{2}\\)</span>, we also derive some counterparts in <span>\\(\\mathbb{R}^{d}\\)</span> by means of integralgeometric considerations. The proofs are based on an <i>ϵ</i>-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00660-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let \(X,Y \subset \mathbb{R}^{2}\) be non-empty Borel sets. If X is not contained in any line, we prove that

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{\mathrm {H}}X,\dim _{\mathrm {H}}Y,1\}. $$

If dimHY>1, we have the following improved lower bound:

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{\mathrm {H}}X + \dim _{\mathrm {H}}Y - 1,1\}. $$

Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if \(X \subset \mathbb{R}^{2}\) is a Borel set with the property that dimH(X ∖ )=dimHX for all lines \(\ell \subset \mathbb{R}^{2}\), then the line set spanned by X has Hausdorff dimension at least min{2dimHX,2}.

While the results above concern \(\mathbb{R}^{2}\), we also derive some counterparts in \(\mathbb{R}^{d}\) by means of integralgeometric considerations. The proofs are based on an ϵ-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.

径向投影的考夫曼和法尔科纳估计以及贝克定理的连续版本
我们就 "径向投影如何扭曲平面集的维度?让 \(X,Y \subset \mathbb{R}^{2}\) 都是非空的伯尔集合。如果 X 不包含在任何直线中,我们证明 $$ \sup _{x \in X} \dim _{mathrm {H}}pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{mathrm {H}X,\dim _{\mathrm {H}Y,1\}.$$ 如果dimHY>1,我们有以下改进的下界: $$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{\dim _{\mathrm {H}}X + \dim _{\mathrm {H}}Y - 1,1\}。$$ 我们的结果解决了 Lund-Thang-Huong、Liu 和第一作者的猜想。另一个推论是下面组合几何中贝克定理的连续版本:如果 \(X \subset \mathbb{R}^{2}\) 是一个波尔集合,对于所有线段 \(\ell \subset \mathbb{R}^{2}\) 具有 dimH(X ∖ ℓ)=dimHX 的性质,那么 X 所跨的线段集合的豪斯多夫维度至少为 min{2dimHX,2}。虽然上述结果涉及到 \(\mathbb{R}^{2}\),但我们也通过积分几何考虑推导出了在\(\mathbb{R}^{d}\)中的一些对应结果。这些证明基于两位第一作者对弗斯滕伯格集问题的ϵ改进、第二和第三作者引入的引导方案,以及傅晓明和任志强提出的新的平面入射估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信