{"title":"Kaufman and Falconer Estimates for Radial Projections and a Continuum Version of Beck’s Theorem","authors":"Tuomas Orponen, Pablo Shmerkin, Hong Wang","doi":"10.1007/s00039-024-00660-3","DOIUrl":null,"url":null,"abstract":"<p>We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let <span>\\(X,Y \\subset \\mathbb{R}^{2}\\)</span> be non-empty Borel sets. If <i>X</i> is not contained in any line, we prove that </p><span>$$ \\sup _{x \\in X} \\dim _{\\mathrm {H}}\\pi _{x}(Y \\, \\setminus \\, \\{x\\}) \\geq \\min \\{ \\dim _{\\mathrm {H}}X,\\dim _{\\mathrm {H}}Y,1\\}. $$</span><p> If dim<sub>H</sub><i>Y</i>>1, we have the following improved lower bound: </p><span>$$ \\sup _{x \\in X} \\dim _{\\mathrm {H}}\\pi _{x}(Y \\, \\setminus \\, \\{x\\}) \\geq \\min \\{ \\dim _{\\mathrm {H}}X + \\dim _{\\mathrm {H}}Y - 1,1\\}. $$</span><p> Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if <span>\\(X \\subset \\mathbb{R}^{2}\\)</span> is a Borel set with the property that dim<sub>H</sub>(<i>X</i> ∖ <i>ℓ</i>)=dim<sub>H</sub><i>X</i> for all lines <span>\\(\\ell \\subset \\mathbb{R}^{2}\\)</span>, then the line set spanned by <i>X</i> has Hausdorff dimension at least min{2dim<sub>H</sub><i>X</i>,2}.</p><p>While the results above concern <span>\\(\\mathbb{R}^{2}\\)</span>, we also derive some counterparts in <span>\\(\\mathbb{R}^{d}\\)</span> by means of integralgeometric considerations. The proofs are based on an <i>ϵ</i>-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"48 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00660-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let \(X,Y \subset \mathbb{R}^{2}\) be non-empty Borel sets. If X is not contained in any line, we prove that
Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if \(X \subset \mathbb{R}^{2}\) is a Borel set with the property that dimH(X ∖ ℓ)=dimHX for all lines \(\ell \subset \mathbb{R}^{2}\), then the line set spanned by X has Hausdorff dimension at least min{2dimHX,2}.
While the results above concern \(\mathbb{R}^{2}\), we also derive some counterparts in \(\mathbb{R}^{d}\) by means of integralgeometric considerations. The proofs are based on an ϵ-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.