Kaufman and Falconer Estimates for Radial Projections and a Continuum Version of Beck’s Theorem

IF 2.4 1区 数学 Q1 MATHEMATICS
Tuomas Orponen, Pablo Shmerkin, Hong Wang
{"title":"Kaufman and Falconer Estimates for Radial Projections and a Continuum Version of Beck’s Theorem","authors":"Tuomas Orponen, Pablo Shmerkin, Hong Wang","doi":"10.1007/s00039-024-00660-3","DOIUrl":null,"url":null,"abstract":"<p>We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let <span>\\(X,Y \\subset \\mathbb{R}^{2}\\)</span> be non-empty Borel sets. If <i>X</i> is not contained in any line, we prove that </p><span>$$ \\sup _{x \\in X} \\dim _{\\mathrm {H}}\\pi _{x}(Y \\, \\setminus \\, \\{x\\}) \\geq \\min \\{ \\dim _{\\mathrm {H}}X,\\dim _{\\mathrm {H}}Y,1\\}. $$</span><p> If dim<sub>H</sub><i>Y</i>&gt;1, we have the following improved lower bound: </p><span>$$ \\sup _{x \\in X} \\dim _{\\mathrm {H}}\\pi _{x}(Y \\, \\setminus \\, \\{x\\}) \\geq \\min \\{ \\dim _{\\mathrm {H}}X + \\dim _{\\mathrm {H}}Y - 1,1\\}. $$</span><p> Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if <span>\\(X \\subset \\mathbb{R}^{2}\\)</span> is a Borel set with the property that dim<sub>H</sub>(<i>X</i> ∖ <i>ℓ</i>)=dim<sub>H</sub><i>X</i> for all lines <span>\\(\\ell \\subset \\mathbb{R}^{2}\\)</span>, then the line set spanned by <i>X</i> has Hausdorff dimension at least min{2dim<sub>H</sub><i>X</i>,2}.</p><p>While the results above concern <span>\\(\\mathbb{R}^{2}\\)</span>, we also derive some counterparts in <span>\\(\\mathbb{R}^{d}\\)</span> by means of integralgeometric considerations. The proofs are based on an <i>ϵ</i>-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"48 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00660-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide several new answers on the question: how do radial projections distort the dimension of planar sets? Let \(X,Y \subset \mathbb{R}^{2}\) be non-empty Borel sets. If X is not contained in any line, we prove that

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{\mathrm {H}}X,\dim _{\mathrm {H}}Y,1\}. $$

If dimHY>1, we have the following improved lower bound:

$$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{\mathrm {H}}X + \dim _{\mathrm {H}}Y - 1,1\}. $$

Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. Another corollary is the following continuum version of Beck’s theorem in combinatorial geometry: if \(X \subset \mathbb{R}^{2}\) is a Borel set with the property that dimH(X ∖ )=dimHX for all lines \(\ell \subset \mathbb{R}^{2}\), then the line set spanned by X has Hausdorff dimension at least min{2dimHX,2}.

While the results above concern \(\mathbb{R}^{2}\), we also derive some counterparts in \(\mathbb{R}^{d}\) by means of integralgeometric considerations. The proofs are based on an ϵ-improvement in the Furstenberg set problem, due to the two first authors, a bootstrapping scheme introduced by the second and third author, and a new planar incidence estimate due to Fu and Ren.

径向投影的考夫曼和法尔科纳估计以及贝克定理的连续版本
我们就 "径向投影如何扭曲平面集的维度?让 \(X,Y \subset \mathbb{R}^{2}\) 都是非空的伯尔集合。如果 X 不包含在任何直线中,我们证明 $$ \sup _{x \in X} \dim _{mathrm {H}}pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{ \dim _{mathrm {H}X,\dim _{\mathrm {H}Y,1\}.$$ 如果dimHY>1,我们有以下改进的下界: $$ \sup _{x \in X} \dim _{\mathrm {H}}\pi _{x}(Y \, \setminus \, \{x\}) \geq \min \{\dim _{\mathrm {H}}X + \dim _{\mathrm {H}}Y - 1,1\}。$$ 我们的结果解决了 Lund-Thang-Huong、Liu 和第一作者的猜想。另一个推论是下面组合几何中贝克定理的连续版本:如果 \(X \subset \mathbb{R}^{2}\) 是一个波尔集合,对于所有线段 \(\ell \subset \mathbb{R}^{2}\) 具有 dimH(X ∖ ℓ)=dimHX 的性质,那么 X 所跨的线段集合的豪斯多夫维度至少为 min{2dimHX,2}。虽然上述结果涉及到 \(\mathbb{R}^{2}\),但我们也通过积分几何考虑推导出了在\(\mathbb{R}^{d}\)中的一些对应结果。这些证明基于两位第一作者对弗斯滕伯格集问题的ϵ改进、第二和第三作者引入的引导方案,以及傅晓明和任志强提出的新的平面入射估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信