On the Almost Reducibility Conjecture

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"On the Almost Reducibility Conjecture","authors":"","doi":"10.1007/s00039-024-00671-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency <span> <span>\\(SL(2,{\\mathbb{R}})\\)</span> </span> cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00671-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Avila’s Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency \(SL(2,{\mathbb{R}})\) cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrödinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila’s, for the important case of Schrödinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.

关于几乎可重复性猜想
摘要 阿维拉的 "几乎可重复性猜想"(ARC)是将解析一频(SL(2,{\mathbb{R}}))环的纯解析性质和动力学性质联系起来的一个强有力的声明。它也是研究解析一频薛定谔算子谱理论的基本工具,具有许多惊人的后果,可以给出亚临界区的详细特征。在此,我们针对具有三角多项式势能和非指数近似频率的薛定谔环的重要情况,给出了与阿维拉完全不同的证明,特别是在这种情况下,我们可以得到所有想要的频谱结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信