Partial limitation of cellular functions and compensatory modulation of unfolded protein response pathways caused by double-knockout of ATF6α and ATF6β

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Ryoko Akai , Hisayo Hamashima , Michiko Saito , Kenji Kohno , Takao Iwawaki
{"title":"Partial limitation of cellular functions and compensatory modulation of unfolded protein response pathways caused by double-knockout of ATF6α and ATF6β","authors":"Ryoko Akai ,&nbsp;Hisayo Hamashima ,&nbsp;Michiko Saito ,&nbsp;Kenji Kohno ,&nbsp;Takao Iwawaki","doi":"10.1016/j.cstres.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Mammalian cells have three types of endoplasmic reticulum (ER) stress-sensing molecules: ATF6, IRE1, and PERK. Among these, ATF6 is unique in that it is processed in an ER-stress-specific manner and functions as a transcription factor for the activation of anti-ER stress genes (such as BiP). ATF6 is known to have two homologues, ATF6α and ATF6β, and a greater understanding of their functions has been achieved through analyses using cultured cells. Physiological functions are also gradually being investigated in mice lacking ATF6α or ATF6β. However, little is known about the effects on mouse organisms of the deletion of both the ATF6α and ATF6β genes, since such double-knockout (DKO) mice suffer embryonic lethality at an early developmental stage. In this study, we generated and analyzed ATF6 DKO mice in which embryonic lethality was evaded by using Cre/loxP technology. Pancreatic β cell-specific ATF6 DKO mice were born normally and lived without dysregulation of blood-glucose levels but had a reduced tolerance to glucose. Islets isolated from ATF6 DKO mice also showed low production and secretion of insulin and mild enhancement of IRE1 and PERK activity. We further examined the developmental abnormalities of systemic ATF6 DKO mice. The phenotypes of ATF6α<sup>−/−</sup>; ATF6β<sup>−/−</sup> mice were similar to those previously reported, but ATF6α<sup>+/−</sup>; ATF6β<sup>−/−</sup> and ATF6α<sup>−/−</sup>; ATF6β<sup>+/−</sup> mice showed embryonic lethality at middle developmental stages, unlike those reported. Analysis of embryonic fibroblasts derived from these mice revealed that ATF6α and ATF6β have a gene-dose-dependent functional redundancy and display distinct differences in their ability to induce BiP expression. (250 words)</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 1","pages":"Pages 34-48"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814523022423/pdfft?md5=0a26f91ad555e96cdde3e0902dd50c3e&pid=1-s2.0-S1355814523022423-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814523022423","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mammalian cells have three types of endoplasmic reticulum (ER) stress-sensing molecules: ATF6, IRE1, and PERK. Among these, ATF6 is unique in that it is processed in an ER-stress-specific manner and functions as a transcription factor for the activation of anti-ER stress genes (such as BiP). ATF6 is known to have two homologues, ATF6α and ATF6β, and a greater understanding of their functions has been achieved through analyses using cultured cells. Physiological functions are also gradually being investigated in mice lacking ATF6α or ATF6β. However, little is known about the effects on mouse organisms of the deletion of both the ATF6α and ATF6β genes, since such double-knockout (DKO) mice suffer embryonic lethality at an early developmental stage. In this study, we generated and analyzed ATF6 DKO mice in which embryonic lethality was evaded by using Cre/loxP technology. Pancreatic β cell-specific ATF6 DKO mice were born normally and lived without dysregulation of blood-glucose levels but had a reduced tolerance to glucose. Islets isolated from ATF6 DKO mice also showed low production and secretion of insulin and mild enhancement of IRE1 and PERK activity. We further examined the developmental abnormalities of systemic ATF6 DKO mice. The phenotypes of ATF6α−/−; ATF6β−/− mice were similar to those previously reported, but ATF6α+/−; ATF6β−/− and ATF6α−/−; ATF6β+/− mice showed embryonic lethality at middle developmental stages, unlike those reported. Analysis of embryonic fibroblasts derived from these mice revealed that ATF6α and ATF6β have a gene-dose-dependent functional redundancy and display distinct differences in their ability to induce BiP expression. (250 words)

ATF6α 和 ATF6β 双基因敲除对细胞功能的部分限制和对未折叠蛋白反应途径的补偿调节
哺乳动物细胞有三种内质网(ER)应激感应分子:ATF6、IRE1 和 PERK。其中,ATF6 的独特之处在于,它以ER 应激特异性方式进行加工,并作为转录因子激活抗 ER 应激基因(如 BiP)。已知 ATF6 有两个同源物,即 ATF6α 和 ATF6β,通过使用培养细胞进行分析,人们对它们的功能有了更深入的了解。人们也在逐渐研究缺乏 ATF6α 或 ATF6β 的小鼠的生理功能。然而,人们对同时缺失 ATF6α 和 ATF6β 基因对小鼠机体的影响知之甚少,因为这种双基因敲除(DKO)小鼠在早期发育阶段就会出现胚胎死亡。在本研究中,我们利用 Cre/loxP 技术生成并分析了 ATF6 DKO 小鼠,并避免了其胚胎致死性。胰腺β细胞特异性ATF6 DKO小鼠出生时正常,生活中血糖水平没有失调,但对葡萄糖的耐受性降低。从 ATF6 DKO 小鼠体内分离出的胰岛也显示出胰岛素的低生成和低分泌以及 IRE1 和 PERK 活性的轻度增强。我们进一步研究了全身性 ATF6 DKO 小鼠的发育异常。ATF6α-/-;ATF6β-/-小鼠的表型与之前报道的相似,但ATF6α+/-;ATF6β-/-和ATF6α-/-;ATF6β+/-小鼠在发育中期出现胚胎死亡,这与之前报道的不同。对来自这些小鼠的胚胎成纤维细胞的分析表明,ATF6α和ATF6β具有基因剂量依赖性功能冗余,并在诱导BiP表达的能力上表现出明显的差异。(250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信