A multimodal deep learning approach for gravel road condition evaluation through image and audio integration

Q1 Engineering
Nausheen Saeed, Moudud Alam, Roger G Nyberg
{"title":"A multimodal deep learning approach for gravel road condition evaluation through image and audio integration","authors":"Nausheen Saeed,&nbsp;Moudud Alam,&nbsp;Roger G Nyberg","doi":"10.1016/j.treng.2024.100228","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the combination of audio and image data to classify road conditions, particularly focusing on loose gravel scenarios. The dataset underwent binary categorisation, comprising audio segments capturing gravel sounds and corresponding images. Early feature fusion, utilising a pre-trained Very Deep Convolutional Networks 19 (VGG19) and Principal component analysis (PCA), improved the accuracy of the Random Forest classifier, surpassing other models in accuracy, precision, recall, and F1-score. Late fusion, involving decision-level processing with logical disjunction and conjunction gates (AND and OR) in combination with individual classifiers for images and audio based on Densely Connected Convolutional Networks 121 (DenseNet121), demonstrated notable performance, especially with the OR gate, achieving 97 % accuracy. The late fusion method enhances adaptability by compensating for limitations in one modality with information from the other. Adapting maintenance based on identified road conditions minimises unnecessary environmental impact. This method can help to identify loose gravel on gravel roads, substantially improving road safety and implementing a precise maintenance strategy through a data-driven approach.</p></div>","PeriodicalId":34480,"journal":{"name":"Transportation Engineering","volume":"16 ","pages":"Article 100228"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666691X24000034/pdfft?md5=e494ea8d359b2181c5933b6007c556a3&pid=1-s2.0-S2666691X24000034-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666691X24000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the combination of audio and image data to classify road conditions, particularly focusing on loose gravel scenarios. The dataset underwent binary categorisation, comprising audio segments capturing gravel sounds and corresponding images. Early feature fusion, utilising a pre-trained Very Deep Convolutional Networks 19 (VGG19) and Principal component analysis (PCA), improved the accuracy of the Random Forest classifier, surpassing other models in accuracy, precision, recall, and F1-score. Late fusion, involving decision-level processing with logical disjunction and conjunction gates (AND and OR) in combination with individual classifiers for images and audio based on Densely Connected Convolutional Networks 121 (DenseNet121), demonstrated notable performance, especially with the OR gate, achieving 97 % accuracy. The late fusion method enhances adaptability by compensating for limitations in one modality with information from the other. Adapting maintenance based on identified road conditions minimises unnecessary environmental impact. This method can help to identify loose gravel on gravel roads, substantially improving road safety and implementing a precise maintenance strategy through a data-driven approach.

通过图像和音频集成进行砾石路状况评估的多模态深度学习方法
本研究调查了结合音频和图像数据对路况进行分类的方法,尤其侧重于松散砾石的情况。数据集进行了二元分类,包括捕捉砾石声音的音频片段和相应的图像。利用预先训练的深度卷积网络 19 (VGG19) 和主成分分析 (PCA) 进行的早期特征融合提高了随机森林分类器的准确度,在准确度、精确度、召回率和 F1 分数方面都超过了其他模型。后期融合法涉及逻辑析取和连接门(AND 和 OR)的决策级处理,结合基于密集连接卷积网络 121(DenseNet 121)的图像和音频单个分类器,表现出显著的性能,尤其是 OR 门,准确率达到 97%。后期融合方法通过利用另一种模式的信息来弥补一种模式的局限性,从而增强了适应性。根据已识别的道路状况调整维护工作,可将不必要的环境影响降至最低。这种方法有助于识别砾石路上的松散砾石,大大提高道路安全性,并通过数据驱动方法实施精确的维护策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Engineering
Transportation Engineering Engineering-Automotive Engineering
CiteScore
8.10
自引率
0.00%
发文量
46
审稿时长
90 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信