Targeting the Bottlenecks in Levan Biosynthesis Pathway in Bacillus subtilis and Strain Optimization by Computational Modeling and Omics Integration.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-02-01 Epub Date: 2024-02-06 DOI:10.1089/omi.2023.0277
Aruldoss Immanuel, Ragothaman M Yennamalli, Venkatasubramanian Ulaganathan
{"title":"Targeting the Bottlenecks in Levan Biosynthesis Pathway in <i>Bacillus subtilis</i> and Strain Optimization by Computational Modeling and Omics Integration.","authors":"Aruldoss Immanuel, Ragothaman M Yennamalli, Venkatasubramanian Ulaganathan","doi":"10.1089/omi.2023.0277","DOIUrl":null,"url":null,"abstract":"<p><p>Levan is a fructan polymer with many industrial applications such as the formulation of hydrogels, drug delivery, and wound healing, among others. To this end, metabolic systems engineering is a valuable method to improve the yield of a specific metabolite in a wide range of bacterial and eukaryotic organisms. In this study, we report a systems biology approach integrating genomics data for the <i>Bacillus subtilis</i> model, wherein the metabolic pathway for levan biosynthesis is unpacked. We analyzed a revised genome-scale enzyme-constrained metabolic model (ecGEM) and performed simulations to increase levan biopolymer production capacity in <i>B. subtilis</i>. We used the model ec_iYO844_lvn to (1) identify the essential genes and bottlenecks in levan production, and (2) specifically design an engineered <i>B. subtilis</i> strain capable of producing higher levan yields. The FBA and FVA analysis showed the maximal growth rate of the organism up to 0.624 hr<sup>-1</sup> at 20 mmol gDw<sup>-1</sup> hr<sup>-1</sup> of sucrose intake. Gene knockout analyses were performed to identify gene knockout targets to increase the levan flux in <i>B. subtilis</i>. Importantly, we found that the <i>pgk</i> and <i>ctaD</i> genes are the two target genes for the knockout. The perturbation of these two genes has flux gains for levan production reactions with 1.3- and 1.4-fold the relative flux span in the mutant strains, respectively, compared to the wild type. In all, this work identifies the bottlenecks in the production of levan and possible ways to overcome them. Our results provide deeper insights on the bacterium's physiology and new avenues for strain engineering.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/omi.2023.0277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Levan is a fructan polymer with many industrial applications such as the formulation of hydrogels, drug delivery, and wound healing, among others. To this end, metabolic systems engineering is a valuable method to improve the yield of a specific metabolite in a wide range of bacterial and eukaryotic organisms. In this study, we report a systems biology approach integrating genomics data for the Bacillus subtilis model, wherein the metabolic pathway for levan biosynthesis is unpacked. We analyzed a revised genome-scale enzyme-constrained metabolic model (ecGEM) and performed simulations to increase levan biopolymer production capacity in B. subtilis. We used the model ec_iYO844_lvn to (1) identify the essential genes and bottlenecks in levan production, and (2) specifically design an engineered B. subtilis strain capable of producing higher levan yields. The FBA and FVA analysis showed the maximal growth rate of the organism up to 0.624 hr-1 at 20 mmol gDw-1 hr-1 of sucrose intake. Gene knockout analyses were performed to identify gene knockout targets to increase the levan flux in B. subtilis. Importantly, we found that the pgk and ctaD genes are the two target genes for the knockout. The perturbation of these two genes has flux gains for levan production reactions with 1.3- and 1.4-fold the relative flux span in the mutant strains, respectively, compared to the wild type. In all, this work identifies the bottlenecks in the production of levan and possible ways to overcome them. Our results provide deeper insights on the bacterium's physiology and new avenues for strain engineering.

针对枯草芽孢杆菌利凡生物合成途径中的瓶颈,通过计算建模和 Omics 整合进行菌株优化。
利凡(Levan)是一种果聚糖聚合物,在许多工业领域都有应用,如配制水凝胶、给药和伤口愈合等。为此,代谢系统工程是提高各种细菌和真核生物中特定代谢物产量的重要方法。在本研究中,我们报告了一种整合枯草芽孢杆菌模型基因组学数据的系统生物学方法,其中解开了利凡生物合成的代谢途径。我们分析了修订后的基因组尺度酶约束代谢模型(ecGEM),并进行了模拟,以提高枯草芽孢杆菌的莱万生物聚合物生产能力。我们利用 ec_iYO844_lvn 模型:(1) 确定了左旋烯烃生产过程中的关键基因和瓶颈;(2) 有针对性地设计了一种能够生产更高左旋烯烃产量的工程化枯草芽孢杆菌菌株。FBA和FVA分析表明,在蔗糖摄入量为20 mmol gDw-1 hr-1时,生物体的最大生长速率可达0.624 hr-1。我们进行了基因敲除分析,以确定基因敲除靶标,从而提高枯草芽孢杆菌的莱万通量。重要的是,我们发现 pgk 和 ctaD 基因是基因敲除的两个靶基因。对这两个基因的扰动可提高levan生产反应的通量,与野生型相比,突变株的相对通量跨度分别是野生型的1.3倍和1.4倍。总之,这项工作确定了利凡生产的瓶颈以及克服这些瓶颈的可能方法。我们的研究结果使人们对该细菌的生理机能有了更深入的了解,并为菌株工程提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信