Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer.

IF 42.1 1区 医学 Q1 ONCOLOGY
Journal of Clinical Oncology Pub Date : 2024-05-01 Epub Date: 2024-02-05 DOI:10.1200/JCO.23.01080
Lujia Chen, Ying Wang, Chunhui Cai, Ying Ding, Rim S Kim, Corey Lipchik, Patrick G Gavin, Greg Yothers, Carmen J Allegra, Nicholas J Petrelli, Jennifer Marie Suga, Judith O Hopkins, Naoyuki G Saito, Terry Evans, Srinivas Jujjavarapu, Norman Wolmark, Peter C Lucas, Soonmyung Paik, Min Sun, Katherine L Pogue-Geile, Xinghua Lu
{"title":"Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer.","authors":"Lujia Chen, Ying Wang, Chunhui Cai, Ying Ding, Rim S Kim, Corey Lipchik, Patrick G Gavin, Greg Yothers, Carmen J Allegra, Nicholas J Petrelli, Jennifer Marie Suga, Judith O Hopkins, Naoyuki G Saito, Terry Evans, Srinivas Jujjavarapu, Norman Wolmark, Peter C Lucas, Soonmyung Paik, Min Sun, Katherine L Pogue-Geile, Xinghua Lu","doi":"10.1200/JCO.23.01080","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients who benefit from oxaliplatin would maximize efficacy and minimize unnecessary adverse side effects.</p><p><strong>Methods: </strong>We trained a new machine learning model, referred to as the colon oxaliplatin signature (COLOXIS) model, for predicting response to oxaliplatin-containing regimens. We examined whether COLOXIS was predictive of oxaliplatin benefits in the CC adjuvant setting among 1,065 patients treated with 5-fluorouracil plus leucovorin (FULV; n = 421) or FULV + oxaliplatin (FOLFOX; n = 644) from NSABP C-07 and C-08 phase III trials. The COLOXIS model dichotomizes patients into COLOXIS+ (oxaliplatin responder) and COLOXIS- (nonresponder) groups. Eight-year recurrence-free survival was used to evaluate oxaliplatin benefits within each of the groups, and the predictive value of the COLOXIS model was assessed using the <i>P</i> value associated with the interaction term (int <i>P</i>) between the model prediction and the treatment effect.</p><p><strong>Results: </strong>Among 1,065 patients, 526 were predicted as COLOXIS+ and 539 as COLOXIS-. The COLOXIS+ prediction was associated with prognosis for FULV-treated patients (hazard ratio [HR], 1.52 [95% CI, 1.07 to 2.15]; <i>P =</i> .017). The model was predictive of oxaliplatin benefits: COLOXIS+ patients benefited from oxaliplatin (HR, 0.65 [95% CI, 0.48 to 0.89]; <i>P =</i> .0065; int <i>P =</i> .03), but COLOXIS- patients did not (COLOXIS- HR, 1.08 [95% CI, 0.77 to 1.52]; <i>P =</i> .65).</p><p><strong>Conclusion: </strong>The COLOXIS model is predictive of oxaliplatin benefits in the CC adjuvant setting. The results provide evidence supporting a change in CC adjuvant therapy: reserve oxaliplatin only for COLOXIS+ patients, but further investigation is warranted.</p>","PeriodicalId":15384,"journal":{"name":"Journal of Clinical Oncology","volume":" ","pages":"1520-1530"},"PeriodicalIF":42.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/JCO.23.01080","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients who benefit from oxaliplatin would maximize efficacy and minimize unnecessary adverse side effects.

Methods: We trained a new machine learning model, referred to as the colon oxaliplatin signature (COLOXIS) model, for predicting response to oxaliplatin-containing regimens. We examined whether COLOXIS was predictive of oxaliplatin benefits in the CC adjuvant setting among 1,065 patients treated with 5-fluorouracil plus leucovorin (FULV; n = 421) or FULV + oxaliplatin (FOLFOX; n = 644) from NSABP C-07 and C-08 phase III trials. The COLOXIS model dichotomizes patients into COLOXIS+ (oxaliplatin responder) and COLOXIS- (nonresponder) groups. Eight-year recurrence-free survival was used to evaluate oxaliplatin benefits within each of the groups, and the predictive value of the COLOXIS model was assessed using the P value associated with the interaction term (int P) between the model prediction and the treatment effect.

Results: Among 1,065 patients, 526 were predicted as COLOXIS+ and 539 as COLOXIS-. The COLOXIS+ prediction was associated with prognosis for FULV-treated patients (hazard ratio [HR], 1.52 [95% CI, 1.07 to 2.15]; P = .017). The model was predictive of oxaliplatin benefits: COLOXIS+ patients benefited from oxaliplatin (HR, 0.65 [95% CI, 0.48 to 0.89]; P = .0065; int P = .03), but COLOXIS- patients did not (COLOXIS- HR, 1.08 [95% CI, 0.77 to 1.52]; P = .65).

Conclusion: The COLOXIS model is predictive of oxaliplatin benefits in the CC adjuvant setting. The results provide evidence supporting a change in CC adjuvant therapy: reserve oxaliplatin only for COLOXIS+ patients, but further investigation is warranted.

机器学习预测奥沙利铂对早期结肠癌的疗效
目的:氟尿嘧啶、亮菌素和奥沙利铂(FOLFOX)联合疗法是切除的早期结肠癌(CC)辅助治疗的标准疗法。奥沙利铂会导致持久的致残性神经毒性。为从奥沙利铂中获益的患者保留该方案可最大限度地提高疗效,减少不必要的不良副作用:我们训练了一个新的机器学习模型,称为结肠奥沙利铂特征(COLOXIS)模型,用于预测对含奥沙利铂治疗方案的反应。我们对NSABP C-07 和 C-08 III期试验中接受5-氟尿嘧啶加亮菌甲素(FULV;n = 421)或FULV + 奥沙利铂(FOLFOX;n = 644)治疗的1,065名患者进行了研究,以确定COLOXIS是否能预测奥沙利铂在CC辅助治疗中的疗效。COLOXIS模型将患者分为COLOXIS+组(奥沙利铂应答组)和COLOXIS-组(无应答组)。用八年无复发生存期来评估各组中奥沙利铂的疗效,并用模型预测与治疗效果之间交互项(int P)的相关 P 值来评估 COLOXIS 模型的预测价值:在 1,065 名患者中,526 人被预测为 COLOXIS+,539 人被预测为 COLOXIS-。COLOXIS+预测与FULV治疗患者的预后相关(危险比[HR],1.52 [95% CI, 1.07 to 2.15];P = .017)。该模型可预测奥沙利铂的疗效:COLOXIS+患者从奥沙利铂中获益(HR,0.65 [95% CI,0.48 至 0.89];P = .0065;int P = .03),但COLOXIS-患者没有获益(COLOXIS- HR,1.08 [95% CI,0.77 至 1.52];P = .65):COLOXIS模型可预测奥沙利铂在CC辅助治疗中的疗效。这些结果为改变 CC 辅助疗法提供了证据:只为 COLOXIS+ 患者保留奥沙利铂,但仍需进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Oncology
Journal of Clinical Oncology 医学-肿瘤学
CiteScore
41.20
自引率
2.20%
发文量
8215
审稿时长
2 months
期刊介绍: The Journal of Clinical Oncology serves its readers as the single most credible, authoritative resource for disseminating significant clinical oncology research. In print and in electronic format, JCO strives to publish the highest quality articles dedicated to clinical research. Original Reports remain the focus of JCO, but this scientific communication is enhanced by appropriately selected Editorials, Commentaries, Reviews, and other work that relate to the care of patients with cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信