Lujia Chen, Ying Wang, Chunhui Cai, Ying Ding, Rim S Kim, Corey Lipchik, Patrick G Gavin, Greg Yothers, Carmen J Allegra, Nicholas J Petrelli, Jennifer Marie Suga, Judith O Hopkins, Naoyuki G Saito, Terry Evans, Srinivas Jujjavarapu, Norman Wolmark, Peter C Lucas, Soonmyung Paik, Min Sun, Katherine L Pogue-Geile, Xinghua Lu
{"title":"Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer.","authors":"Lujia Chen, Ying Wang, Chunhui Cai, Ying Ding, Rim S Kim, Corey Lipchik, Patrick G Gavin, Greg Yothers, Carmen J Allegra, Nicholas J Petrelli, Jennifer Marie Suga, Judith O Hopkins, Naoyuki G Saito, Terry Evans, Srinivas Jujjavarapu, Norman Wolmark, Peter C Lucas, Soonmyung Paik, Min Sun, Katherine L Pogue-Geile, Xinghua Lu","doi":"10.1200/JCO.23.01080","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients who benefit from oxaliplatin would maximize efficacy and minimize unnecessary adverse side effects.</p><p><strong>Methods: </strong>We trained a new machine learning model, referred to as the colon oxaliplatin signature (COLOXIS) model, for predicting response to oxaliplatin-containing regimens. We examined whether COLOXIS was predictive of oxaliplatin benefits in the CC adjuvant setting among 1,065 patients treated with 5-fluorouracil plus leucovorin (FULV; n = 421) or FULV + oxaliplatin (FOLFOX; n = 644) from NSABP C-07 and C-08 phase III trials. The COLOXIS model dichotomizes patients into COLOXIS+ (oxaliplatin responder) and COLOXIS- (nonresponder) groups. Eight-year recurrence-free survival was used to evaluate oxaliplatin benefits within each of the groups, and the predictive value of the COLOXIS model was assessed using the <i>P</i> value associated with the interaction term (int <i>P</i>) between the model prediction and the treatment effect.</p><p><strong>Results: </strong>Among 1,065 patients, 526 were predicted as COLOXIS+ and 539 as COLOXIS-. The COLOXIS+ prediction was associated with prognosis for FULV-treated patients (hazard ratio [HR], 1.52 [95% CI, 1.07 to 2.15]; <i>P =</i> .017). The model was predictive of oxaliplatin benefits: COLOXIS+ patients benefited from oxaliplatin (HR, 0.65 [95% CI, 0.48 to 0.89]; <i>P =</i> .0065; int <i>P =</i> .03), but COLOXIS- patients did not (COLOXIS- HR, 1.08 [95% CI, 0.77 to 1.52]; <i>P =</i> .65).</p><p><strong>Conclusion: </strong>The COLOXIS model is predictive of oxaliplatin benefits in the CC adjuvant setting. The results provide evidence supporting a change in CC adjuvant therapy: reserve oxaliplatin only for COLOXIS+ patients, but further investigation is warranted.</p>","PeriodicalId":15384,"journal":{"name":"Journal of Clinical Oncology","volume":" ","pages":"1520-1530"},"PeriodicalIF":42.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/JCO.23.01080","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients who benefit from oxaliplatin would maximize efficacy and minimize unnecessary adverse side effects.
Methods: We trained a new machine learning model, referred to as the colon oxaliplatin signature (COLOXIS) model, for predicting response to oxaliplatin-containing regimens. We examined whether COLOXIS was predictive of oxaliplatin benefits in the CC adjuvant setting among 1,065 patients treated with 5-fluorouracil plus leucovorin (FULV; n = 421) or FULV + oxaliplatin (FOLFOX; n = 644) from NSABP C-07 and C-08 phase III trials. The COLOXIS model dichotomizes patients into COLOXIS+ (oxaliplatin responder) and COLOXIS- (nonresponder) groups. Eight-year recurrence-free survival was used to evaluate oxaliplatin benefits within each of the groups, and the predictive value of the COLOXIS model was assessed using the P value associated with the interaction term (int P) between the model prediction and the treatment effect.
Results: Among 1,065 patients, 526 were predicted as COLOXIS+ and 539 as COLOXIS-. The COLOXIS+ prediction was associated with prognosis for FULV-treated patients (hazard ratio [HR], 1.52 [95% CI, 1.07 to 2.15]; P = .017). The model was predictive of oxaliplatin benefits: COLOXIS+ patients benefited from oxaliplatin (HR, 0.65 [95% CI, 0.48 to 0.89]; P = .0065; int P = .03), but COLOXIS- patients did not (COLOXIS- HR, 1.08 [95% CI, 0.77 to 1.52]; P = .65).
Conclusion: The COLOXIS model is predictive of oxaliplatin benefits in the CC adjuvant setting. The results provide evidence supporting a change in CC adjuvant therapy: reserve oxaliplatin only for COLOXIS+ patients, but further investigation is warranted.
期刊介绍:
The Journal of Clinical Oncology serves its readers as the single most credible, authoritative resource for disseminating significant clinical oncology research. In print and in electronic format, JCO strives to publish the highest quality articles dedicated to clinical research. Original Reports remain the focus of JCO, but this scientific communication is enhanced by appropriately selected Editorials, Commentaries, Reviews, and other work that relate to the care of patients with cancer.