Identification of selective plant-derived natural carotenoid and flavonoids as the potential inhibitors of DHHC-mediated protein S-palmitoylation: an in silico study.
{"title":"Identification of selective plant-derived natural carotenoid and flavonoids as the potential inhibitors of DHHC-mediated protein <i>S-</i>palmitoylation: an <i>in silico</i> study.","authors":"Suchi Chaturvedi, Nirali Pandya, Sushabhan Sadhukhan, Avinash Sonawane","doi":"10.1080/07391102.2024.2306502","DOIUrl":null,"url":null,"abstract":"<p><p>Protein <i>S-</i>palmitoylation mediated by DHHCs is recognized as a distinct and reversible form of lipid modification connected with several health perturbations, including neurodegenerative disorders, cancer, and autoimmune conditions. However, the pharmacological characteristics of current pan-DHHC inhibitors, particularly their toxicity and off-target effects, have hindered their in-depth cellular investigations. The therapeutic properties of the natural compounds, with minimal side effects, allowed us to evaluate them as DHHC-targeting inhibitors. Here, we performed an <i>insilico</i> screening of 115 phytochemicals to assess their interactions with the DHHC20 binding site. Among these compounds, lutein, 5-hydroxyflavone, and 6-hydroxyflavone exhibited higher binding energy (-9.2, -8.5, and -8.5 kcal/mol) in the DHHC20 groove compared to pan-DHHC inhibitor 2-BP (-7.0 kcal/mol). Furthermore, we conducted a 100 ns MD simulation to evaluate the stability of these complexes under physiological conditions. The MDsimulation results indicated that DHHC20 formed a more stable conformation with lutein compared to 5-hydroxyflavone and 6-hyroxyflavone <i>via</i> hydrophobic and H-bond interactions. Conclusively, these results could serve as a promising starting point for exploring the use of these natural molecules as DHHC20 inhibitors.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"5110-5123"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2306502","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein S-palmitoylation mediated by DHHCs is recognized as a distinct and reversible form of lipid modification connected with several health perturbations, including neurodegenerative disorders, cancer, and autoimmune conditions. However, the pharmacological characteristics of current pan-DHHC inhibitors, particularly their toxicity and off-target effects, have hindered their in-depth cellular investigations. The therapeutic properties of the natural compounds, with minimal side effects, allowed us to evaluate them as DHHC-targeting inhibitors. Here, we performed an insilico screening of 115 phytochemicals to assess their interactions with the DHHC20 binding site. Among these compounds, lutein, 5-hydroxyflavone, and 6-hydroxyflavone exhibited higher binding energy (-9.2, -8.5, and -8.5 kcal/mol) in the DHHC20 groove compared to pan-DHHC inhibitor 2-BP (-7.0 kcal/mol). Furthermore, we conducted a 100 ns MD simulation to evaluate the stability of these complexes under physiological conditions. The MDsimulation results indicated that DHHC20 formed a more stable conformation with lutein compared to 5-hydroxyflavone and 6-hyroxyflavone via hydrophobic and H-bond interactions. Conclusively, these results could serve as a promising starting point for exploring the use of these natural molecules as DHHC20 inhibitors.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.