Design of human ACE2 mimic miniprotein binders that interact with RBD of SARS-CoV-2 variants of concerns.

IF 2.4 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Neeraj K Gaur, Zeenat Khakerwala, Ravindra D Makde
{"title":"Design of human ACE2 mimic miniprotein binders that interact with RBD of SARS-CoV-2 variants of concerns.","authors":"Neeraj K Gaur, Zeenat Khakerwala, Ravindra D Makde","doi":"10.1080/07391102.2024.2310789","DOIUrl":null,"url":null,"abstract":"<p><p>The world of medicine demands from the research community solutions to the emerging problem of SARS-CoV-2 variants and other such potential global pandemics. With advantages of specificity over small molecule drugs and designability over antibodies, miniprotein therapeutics offers a unique solution to the threats of rapidly emerging SARS-CoV-2 variants. Unfortunately, most of the promising miniprotein binders are <i>de novo</i> designed and it is not viable to generate molecules for each new variant. Therefore in this study, we demonstrate a method for design of miniprotein mimics from the interaction interphase of human angiotensin converting enzyme 2 (ACE2). ACE2 is the natural interacting partner for the SARS-CoV-2 spike receptor binding domain (RBD) and acts as a recognition molecule for viral entry into the host cells. Starting with ACE2 N-terminal triple helix interaction interphase, we generated more than 70 miniprotein sequences. Employing Rosetta folding and docking scores we selected 10 promising miniprotein candidates amongst which 3 were found to be soluble in lab studies. Further, using molecular mechanics (MM) calculations on molecular dynamics (MD) trajectories we test interaction of miniproteins with RBD from various variants of concern (VOC). Presently, we report two key findings; miniproteins in this study are generated using less than 10 lab testing experiments, yet when tested through <i>in-vitro</i> experiments, they show submicro to nanomolar affinities towards SARS-CoV-2 RBD. Also in simulation studies, when compared with previously developed therapeutics, our miniproteins display remarkable ability to mimic ACE2 interphase; making them an ideal solution to the ever evolving problem of VOCs.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"5999-6011"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2310789","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The world of medicine demands from the research community solutions to the emerging problem of SARS-CoV-2 variants and other such potential global pandemics. With advantages of specificity over small molecule drugs and designability over antibodies, miniprotein therapeutics offers a unique solution to the threats of rapidly emerging SARS-CoV-2 variants. Unfortunately, most of the promising miniprotein binders are de novo designed and it is not viable to generate molecules for each new variant. Therefore in this study, we demonstrate a method for design of miniprotein mimics from the interaction interphase of human angiotensin converting enzyme 2 (ACE2). ACE2 is the natural interacting partner for the SARS-CoV-2 spike receptor binding domain (RBD) and acts as a recognition molecule for viral entry into the host cells. Starting with ACE2 N-terminal triple helix interaction interphase, we generated more than 70 miniprotein sequences. Employing Rosetta folding and docking scores we selected 10 promising miniprotein candidates amongst which 3 were found to be soluble in lab studies. Further, using molecular mechanics (MM) calculations on molecular dynamics (MD) trajectories we test interaction of miniproteins with RBD from various variants of concern (VOC). Presently, we report two key findings; miniproteins in this study are generated using less than 10 lab testing experiments, yet when tested through in-vitro experiments, they show submicro to nanomolar affinities towards SARS-CoV-2 RBD. Also in simulation studies, when compared with previously developed therapeutics, our miniproteins display remarkable ability to mimic ACE2 interphase; making them an ideal solution to the ever evolving problem of VOCs.

设计能与 SARS-CoV-2 变异体的 RBD 相互作用的人类 ACE2 模拟小蛋白结合体。
医学界要求研究界为新出现的 SARS-CoV-2 变种和其他潜在的全球流行病问题提供解决方案。与小分子药物相比,小蛋白疗法具有特异性强的优点,与抗体相比,又具有可设计性的优点,因此,它为解决迅速出现的 SARS-CoV-2 变种的威胁提供了一种独特的解决方案。遗憾的是,大多数有前景的小蛋白结合剂都是全新设计的,为每种新变体生成分子是不可行的。因此,在本研究中,我们展示了一种从人类血管紧张素转换酶 2(ACE2)的相互作用间期设计小蛋白模拟物的方法。ACE2 是 SARS-CoV-2 穗状受体结合域(RBD)的天然相互作用伙伴,是病毒进入宿主细胞的识别分子。从 ACE2 N 端三螺旋相互作用间期开始,我们生成了 70 多个小蛋白序列。利用 Rosetta 折叠和对接得分,我们选出了 10 个有希望的候选小蛋白,其中 3 个在实验室研究中被发现是可溶的。此外,我们还利用分子动力学(MD)轨迹进行了分子力学(MM)计算,测试了小蛋白与各种相关变体(VOC)的 RBD 之间的相互作用。目前,我们报告了两项重要发现:本研究中的小蛋白是通过不到 10 次实验室测试实验生成的,但在体外实验中,它们与 SARS-CoV-2 RBD 的亲和力从亚微米级到纳摩尔级不等。此外,在模拟研究中,与以前开发的疗法相比,我们的小蛋白显示出模仿 ACE2 间期的卓越能力,使它们成为解决不断发展的挥发性有机化合物问题的理想方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信