{"title":"Revealing genomic heterogeneity and commonality: A penalized integrative analysis approach accounting for the adjacency structure of measurements","authors":"Xindi Wang, Yu Jiang, Yifan Sun","doi":"10.1002/gepi.22549","DOIUrl":null,"url":null,"abstract":"<p>Advancements in high-throughput genomic technologies have revolutionized the field of disease biomarker identification by providing large-scale genomic data. There is an increasing focus on understanding the relationships among diverse patient groups with distinct disease subtypes and characteristics. Complex diseases exhibit both heterogeneity and shared genomic factors, making it essential to investigate these patterns to accurately detect markers and comprehensively understand the diseases. Integrative analysis has emerged as a promising approach to address this challenge. However, existing studies have been limited by ignoring the adjacency structure of genomic measurements, such as single nucleotide polymorphisms (SNPs) and DNA methylations. In this study, we propose a structured integrative analysis method that incorporates a spline type penalty to accommodate this adjacency structure. We utilize a fused lasso type penalty to identify both heterogeneity and commonality across the groups. Extensive simulations demonstrate its superiority compared to several direct competing methods. The analysis of The Cancer Genome Atlas melanoma data with DNA methylation measurements and GENEVA diabetes data with SNP measurements exhibit that the proposed analysis lead to meaningful findings with better prediction performance and higher selection stability.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 3","pages":"114-140"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22549","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in high-throughput genomic technologies have revolutionized the field of disease biomarker identification by providing large-scale genomic data. There is an increasing focus on understanding the relationships among diverse patient groups with distinct disease subtypes and characteristics. Complex diseases exhibit both heterogeneity and shared genomic factors, making it essential to investigate these patterns to accurately detect markers and comprehensively understand the diseases. Integrative analysis has emerged as a promising approach to address this challenge. However, existing studies have been limited by ignoring the adjacency structure of genomic measurements, such as single nucleotide polymorphisms (SNPs) and DNA methylations. In this study, we propose a structured integrative analysis method that incorporates a spline type penalty to accommodate this adjacency structure. We utilize a fused lasso type penalty to identify both heterogeneity and commonality across the groups. Extensive simulations demonstrate its superiority compared to several direct competing methods. The analysis of The Cancer Genome Atlas melanoma data with DNA methylation measurements and GENEVA diabetes data with SNP measurements exhibit that the proposed analysis lead to meaningful findings with better prediction performance and higher selection stability.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.